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An epitaxial semiconductor-superconductor nanowire is a superconducting system with a complex level
structure originating from hybridization: in addition to a dense set of higher-energy states derived predominantly
from the metallic superconducting shell above the bulk gap �, there is a smaller number of lower-energy
proximitized states from the semiconducting core that define the induced gap �∗. Nanostructures built from
such nanowires can furthermore incorporate quantum dots in order to obtain localized spins for storing and
manipulating quantum information. We discuss the magnetic field dependence in three devices with different
combinations of embedded quantum dots and superconducting islands. For strong fields, they show pinning of
excitation energies to a uniform spacing, even if for weak fields they have nonuniversal properties with different
behaviors for even and odd numbers of confined electrons. We propose a quantum impurity model for hybrid
devices that incorporates all relevant physical effects. We show that the model accounts for the key observations
and permits unambiguous interpretation in terms of many-particle states. In particular, we study the replicas of
the Yu-Shiba-Rusinov states in the hybrid gap, their collapse and oscillation around zero bias with increasing
field, and the strong smoothing effect of the spin-orbit coupling (SOC) on these oscillations. We propose that
the SOC-induced mixing of many-body states is a generic mechanism and that magnetic pinning is likely to be
a ubiquitous feature in hybrid nanowires.
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I. INTRODUCTION

Digital electronics driving modern technology is largely
based on semiconducting materials, especially silicon [1,2].
In recent decades pioneering quantum-coherent solid-state de-
vices were built from superconducting materials [3–9]. Novel
functionality can be obtained by combining both types of
materials [10–18]. One line of research are semiconducting
nanowires covered by a superconducting shell [19–21]. They
may find application as qubits based on different types of
bound states [22–26]. Such semisuper hybrid nanowires have
well defined interfaces between the two types of materials,
especially if the superconducting shell is deposited epitaxi-
ally [19]. This leads to hybridization of wave functions from
both sides [27,28], an induced superconducting gap in the
semiconducting core (proximity effect) [29] and a nontrivial
overall electronic structure, the details of which will need
to be well understood for reproducibly building advanced
quantum devices [30–35]. The local density of states in the
center of the nanowire is dominated close to the edge of
the induced gap �∗ by the Andreev levels derived from the
semiconductor states; this is clearly the case in nanowires in
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which the proximity gap �∗ is significantly lower than the gap
of the pristine superconducting material �. Using the back
gate it is possible to control the relative position of the wave
functions by moving core states closer or further away from
the interface with the shell, which results in variable induced
gaps and different magnetic field dependencies [36–39]. The
core semiconductor is nominally intrinsic and the devices are
typically tuned close to pinch-off points (near depletion), i.e.,
the free electron density is low. Furthermore, the nanowires
have a finite length which leads to quantization of longitudinal
modes, which is expected to be particularly pronounced in
the commonly used materials InAs and InSb with very low
effective masses of electrons in the conduction band, m∗ ∼
0.04me [40,41] (similar quantization effects are also observed
in surface adsorbate chains [42]). The proximitized levels thus
do not form a continuum as in a bulk metallic superconductor,
but rather a set of discrete states (i.e., a quasicontinuum)
[39,43]. In this work, we will present several devices where
this is particularly manifest and study the implications of this
situation on the magnetic field dependence.

For storing quantum information one can confine electrons
in quantum dots that can be electrostatically defined in sec-
tions of the nanowire. A qubit can be based, for example, on
the spin degree of freedom of the trapped particle [44]. The
resulting local moment is interacting with the itinerant elec-
trons in its vicinity through exchange coupling [45]. This is
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FIG. 1. (a) A sketch of a hexagonal semiconducting nanowire
(orange) covered with a superconductor (blue), and proximitized
with a quantum dot (yellow). (b) The model consists of a quantum
dot coupled to a small number of proximitized levels predominantly
located in the semiconducting core, and a large number of strongly
superconducting levels in the shell. The superconducting pairing
between two levels is a product of their level dependent pairing
strength α, with α∗ < α the weak effective pairing of the proximi-
tized levels. iλ describes the all-to-all spin-orbit interaction and v the
QD - nanowire coupling strength.

known to result in the Yu-Shiba-Rusinov (YSR) states within
the superconducting (SC) gap [46–49]. A YSR singlet is a
spin-singlet bound state between the spin on the quantum dot
(QD) and the spin carried by Bogoliubov quasiparticles. Be-
cause the QD wave function is localized in the nanowire core,
the localized level most strongly couples with the itinerant
quasiparticles that are likewise radially confined to the core
region, and these are precisely the quasicontinuum proximi-
tized levels introduced above. A sketch of the system is shown
in Fig. 1. In this work, we show that this state of affairs results
in a particular behavior in external magnetic field that mani-
fests as magnetic pinning of the sizes of even-occupancy and
odd-occupancy regions to equal values (the so-called 1e-1e
charging pattern [21,50–52]1) when the number of electrons
in the system is varied. We explain this behavior through
a step-by-step collapse of pairing correlation in successive
quasicontinuum levels as the field is gradually increased: the
linear superposition of zero and double electron occupancy of
low-lying proximitized Andreev levels, characteristic of the
superconducting state, gives way to singly occupied levels
that permit energy lowering through alignment of magnetic
moments with the field. This occurs in a stepwise fashion with
each change of the state in one additional Andreev level. Each
time, the parity of total electron occupancy also changes. Such
partial collapse of superconductivity in a discrete set of levels
is hence expected to produce oscillatory (zigzag) patterns in
charging diagrams plotted as a function of field and gate
voltage. In the following we show, however, that spin-orbit
coupling (SOC), which is strong in InAs and InSb nanowires
[38,53–55], smoothens out these oscillations and produces a
set of equidistant flat lines; this is a direct consequence of the
SOC mixing states differing by �Sz = ±1 that leads to the an-
ticrossing of many-body states. The phenomenon is expected
to be robust in the presence of SOC and hence ubiquitous in
this family of devices.

1By 1e-1e charging pattern we mean the absence of even-odd ef-
fects in the charging diagram when electrons are added to the system.

This work is structured as follows. In Sec. II, we present
experimental observations on three different devices based
on the same batch of hybrid nanowires that indicate the
presence of a discrete set of excitations above the edge of
the induced superconducting gap (the quasicontinuum) and
show the 1e-1e charging pattern for large magnetic fields. In
Sec. III, we propose a simplified theoretical model based on
the Richardson’s model of a superconductor and the Anderson
impurity model of a quantum dot, which incorporates all key
ingredients (Cooper pairing, charge repulsion, SOC, Kondo
exchange coupling). The Hamiltonian can be written as a
product of operator matrices and solved using the density
matrix renormalization group (DMRG) in the matrix product
state formulation. We show how the successive changes of
the electron state in the quasicontinuum levels, in combina-
tion with the SOC, lead to generic emergence of the 1e-1e
charging pattern. Finally, in Sec. IV, we discuss the broader
implications of this result and conclude by describing how
future controlled experiments could be used to conclusively
test the theoretical model.

II. EXPERIMENTAL OBSERVATIONS

We start by presenting the evolution of the subgap ex-
citations with increasing magnetic field in three different
nanostructures incorporating quantum dots and hybrid SC
islands. For consistent results, the devices are made of the
same batch of InAs nanowires with a 7-nm epitaxial supercon-
ducting Al shell covering three of their facets. This ensures
the same interface (on the average), similar semiconduc-
tor/superconductor hybridization, and thus a similar number
of low-lying excitations in the hybrid superconductors (HS).
The Al is lithographically shaped into the desired pattern by
selectively etching the Al using Transene D. The nanowires
are either deposited on an array of insulated bottom gate
electrodes or coated by a 5-nm hafnium oxide layer before
Ti/Au gate electrodes are deposited on top. Ohmic contacts
to the nanowires are obtained by argon ion milling prior
to deposition of Ti/Au source/drain electrodes. We employ
standard lock-in techniques to measure the differential con-
ductance G in two-terminal configurations. The measurements
are performed in a dilution refrigerator at a base temperature
of 25–35 mK.

A. Evidence for complex level structure

We first consider the HS–QD–QD–HS device shown in
Fig. 2(a). This structure allows high-resolution bias spec-
troscopy because the sharp subgap excitations (YSR states)
of the HS coupled to the first QD can be used to probe the ex-
citation spectrum of the second QD-HS half-system, thereby
achieving a very high spectral resolution of 12–14 μV for the
peak widths of the subgap features inside the superconducting
gap. Figure 2(b) shows the bias spectra for zero field and for
B = 0.1 T. In the absence of the field the spectrum shows a
characteristic Yu-Shiba-Rusinov (YSR) loop which appears
split due to the way it is probed. In the ideal case of a QD
weakly coupled to a standard bulk SC, the exchange inter-
action would produce at half filling a single excited singlet
subgap state with an excitation energy (with respect to the
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FIG. 2. (a) Hybrid superconductor–double quantum dot–hybrid
superconductor device. Magnetic field direction is indicated by the
arrow. (b) Conductance G vs the source-drain voltage V and gate
voltage at zero field and at B = 0.1 T. While only the gate voltage
VQD,R is indicated, both VQD,L and VQD,R are swept in a trajectory
which changes the ground state by changing the charge R of the
right QD while keeping the charge L of the left QD constant. Charge
states L,R in the lowest empty QD levels are indicated. (c) Field
dependence at four VQD,L, VQD,R locations corresponding to different
charge states. The ground state at B = 0 is a spin singlet in the
top and bottom panels, and a spin doublet in the two middle ones.
The replica lines converge to V = 0 at the same B (B∗ = 0.16 T)
independently of the charge state. Dashed lines in the top panel
highlight the different slopes of some of the replica lines and their
curvatures. The inset shows the inter-peak spacing, δ = 31 ± 5μV, at
B = 0.1 T. Average δ is an estimate for the typical spacing between
the Andreev levels that couple to the QD.

doublet ground state) below the bulk energy gap. In contrast,
for our system Fig. 2(b) shows that the loop is replicated mul-
tiple times below 2� = 0.53 meV, where � is the bulk energy
gap of the Al film. We interpret these replicas to be due to
multiple discrete Andreev levels in the hybrid superconductor,
as commonly observed in similar nanostructures [39,56–59].
At finite magnetic field, right panel in Fig. 2(b), the number
of peaks seems significantly higher than at zero field. This is
due to two effects of the Zeeman term, which both enhance
our ability to resolve the states forming the quasicontinuum:
the energy splitting itself and the decrease of the peak width
by a factor of 4 by lifting the degeneracy in the excitations of
both QD-HS components.

The field dependence of the differential conductance spec-
tra measured at the center of four different charge sectors,
Fig. 2(c), shows that the effective mini-gap, defined by the po-
sitions of the lowest subgap peaks, closes at the same B = B∗
in all cases, i.e., independently of the ground state (GS). This
indicates that the phenomenon of gap closure is related to the
properties of the nanowire itself (i.e., of the excited states
in the two HSs) and that it is effectively independent of the
detailed behavior of QDs.

We note that at low fields the spectral lines shift with B with
different slopes. This is because the replica lines originate
from different orbitals in the HSs that have different gyro-
magnetic ratios due to mesoscopic fluctuations, as commonly
observed in materials with strong SOC [36,50,60–63]. We
also observe that some lines are curved. This is due to avoided
crossings between the excitations of the same parity, again as
a consequence of strong SOC. From the inter-peak spacing
δ, clearly resolved at B = 0.1 T, we estimate the number of
low-lying excitations in the HSs that are substantially coupled
to the quantum dot to be of order 10; for example, the exact
count of resolved levels is 12 for the case shown in the top-
most panel of Fig. 2(c). For B > B∗, the zero-bias G never
returns to zero, as multiple peaks cross zero bias. For δ of the
order of the peak resolution, the multiple peaks can appear as
a single zero-bias peak as in the lowest panel in Fig. 2(c).

Multiple peaks in bias spectroscopy can be interpreted as
multiple Andreev reflections (MAR)—in the case of a weakly
detuned QD, one finds peaks at V = 2�/(en) for integer n
[64]. However, the peaks observed in Fig. 2(c) are approx-
imately equally spaced (see inset), and do not drastically
decrease in amplitude, as expected from MAR. A possible
exception is the bottom panel of Fig. 7(c), where the QDs
are tuned close to resonance and a contribution of the MAR
process is expected in the subgap structure. It is however
reduced due to the charging energy of the QDs.

B. Evidence for magnetic pinning from the charging diagrams

We now study a metal–QD–superconducting island (SI)–
metal device, shown in Fig. 3(a), where the QD–SI subsystem
is believed to be a clean experimental realization of the Hamil-
tonian studied in the theory section of this work (Sec. III). The
ground state of this structure is probed by transport measure-
ment using weakly-perturbing tunneling contacts. The QD is
tuned so that it has odd occupation, while the gate voltage
applied to the SI, VS , is swept so that charge is added to SI in
steps of 1, since the SI charging energy exceeds the induced
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FIG. 3. (a) Metal–quantum dot–superconducting island (SI)–
metal device. (b) Zero-bias G vs B and the SI gate VS. (c) Spacings
So, Se between adjacent pairs of peaks indicated by bars in (b), as a
function of the magnetic field.

superconducting gap, Ec > �∗ (see Ref. [65] for more details
on this device structure). In Fig. 3(b), we show the zero-bias
conductance diagram as a function of magnetic field and VS ,
with lines of high conductance corresponding to transitions
between the different charge states. With increasing field the
widths of even and odd occupancy regions evolves linearly,
see also Fig. 3(c), until the spacing becomes uniform. The
lines are then parallel within the experimental error. This
diagram directly shows the 1e-1e charging pattern for B > B∗
[21,50,52].

C. Evidence for magnetic pinning from the large-bias
conductance spectra

The pinning can also be probed using an alternative method
that makes use of the soft-gap SC–QD–SI–metal device
shown in Fig. 4(a). The device is characterized in a similar
way as in a single-electron transistor, with the bias giving ac-
cess to higher charge states formed by the coupling of the QD
to the SI [65]. The SI is in the regime Ec > �∗, and therefore
it can host Cooper pairs but also, for appropriate gate voltage,
an odd-numbered quasiparticle. An opaque tunneling barrier
between the QD and the soft-gap superconductor enhances
the resolution of single-particle transitions between the higher
charge states when probed by its coherence peaks. Figure 4(b)
shows a typical bias spectrum at zero field. We sweep the gate
voltages of the QD and SI in a trajectory which keeps the
total charge approximately constant, therefore maintaining the
same type of ground state. This trajectory alternates the even
and odd filling of the SI (i.e., absence or presence of a lone
quasiparticle) and simultaneously alternates the filling of the
QD levels between odd and even numbers of electrons. This
results in a modulation of the excitation energy of the state
visible as gate-modulated G lines in the spectrum. The lines
come in pairs separated by an energy 2�∗, with the lowest
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FIG. 4. (a) Metal–SI–QD–SI–metal device. The left SI is so
strongly coupled to the left metal that the device becomes effectively
a soft superconductor–QD–SI–metal device. (b) G vs source-drain
voltage V and gate voltage VQD. While only VQD is indicated, both
VQD and VS are swept in a trajectory which keeps the total charge ap-
proximately constant. Energy differences for two single-quasiparticle
addition excitations of the same total charge are indicated by arrows.
The pairs repeat at higher bias with an energy periodicity of Ec, the
Coulomb repulsion of the SI. The oscillations of the conductance
lines come from filling of the QD and the SI. (c) B dependence of
the negative-bias side of (b). A dashed line serves as a guide to the
eye for following the convergence of a pair of single quasiparticle
addition excitations with increasing B. At B > 0.7 T and up to the
largest B in the superconducting state, the conductance lines from
each pair are fully merged, and each pair is spaced from the next one
by Ec.

line being unpaired. The pairs repeat themselves at larger
bias with every line in a given pair separated by Ec from its
counterpart in the next pair. Therefore the higher charge states
producing the G lines in a given pair have the same charge,
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which changes in steps of one electron from pair to pair. As
shown in Fig. 4(c), when applying a B field, the pairs oscillate
around each other and steadily collapse into a single line at
B = 0.7 T. They remain collapsed up to B = 1.3 T, as we
corroborated by measurements every 0.1 T. Superconductivity
is present in this device up to at least 1.5 T, which excludes the
normal state in the superconducting shell as an explanation
for the observations. Instead, the emergence of equidistant
parallel lines is believed to be due to the same mechanism
as the 1e-1e charging pattern in the zero-bias conductance
charging diagrams presented in the previous section.

III. THEORETICAL MODELLING

The experimental results presented above show two key
features: (1) the presence of a quasicontinuum of Andreev
levels with energies in the interval [�∗ : �], i.e., between
the induced and bulk superconducting gap and (2) the 1e-1e
charging pattern for fields B > B∗. Using a simplified model,
we show here how the first feature leads to the second.

A. Model for a superconducting island with complex
level structure

We describe the superconducting island in the hybrid
semisuper nanowire using an empirical model based on the
Richardson’s Hamiltonian for superconductors [61,66,67],
modified to account for the different types of levels in the
system:

HSI =
∑

iσ

εic
†
iσ ciσ − 1

N

∑
i, j

αi, jc
†
i↑c†

i↓c j↓c j↑

+
∑
i, j,σ

λσ
i jc

†
iσ c jσ̄ + Ec(n̂sc − n0)2. (1)

Here ciσ annihilates a spin-σ electron in level i = 1, . . . , N
with energy εi of the SI. For simplicity we take a uniform
mesh with εi spanning the interval [−1 : 1]; the half-
bandwidth thus defines the energy unit in the calculations.

The pairing term takes the form αi jc
†
i↑c†

i↓c j↓c j↑ with the
coefficient matrix that is a direct product αi j = αiα j , so that it
factorizes:

∑
i, j

αi, jc
†
i↑c†

i↓c j↓c j↑ =
(∑

i

αic
†
i↑c†

i↓

)⎛
⎝∑

j

α jc j↓c j↑

⎞
⎠. (2)

The couplings αi parametrize how strongly a given level i
participates in the formation of the superconducting state.
Since the levels correspond to linear superpositions of wave
functions in the superconducting shell and in the semiconduct-
ing core, we can separate states according to their character.
For states predominantly from the metal shell, we assume a
constant value, αi = α. The parameter α controls the bulk gap
�. For states with a strong semiconductor character, we take
smaller values, αi < α. Specifically, in numerical calculations
we take a set of equally spaced values spanning the interval
[α∗ : α], such that

αi = α∗ + (α − α∗)
i − 1

N∗ , (3)

where i = 1, . . . , N∗ enumerates the N∗ states forming the
quasicontinuum of Andreev states with energies below �.
The parameter α∗ controls the proximity gap �∗. Reasonable
(experimentally relevant) values are N∗ ∼ 10 and �∗ = �/2;
α and α∗ need to be tuned appropriately to obtain this gap
ratio.

The Hamiltonian also incorporates SOC terms of the form
λσ

i jc
†
iσ c jσ̄ with [61,68–70]

λσ
i j = −λσ

ji = (
λσ̄

ji

)∗
. (4)

The parameters λi j should be large for the levels derived from
the semiconductor states. For simplicity we take

λi j ≡ iλ, (5)

with λ ∈ R and i < j. This is a good approximation because
the SOC is effective only for singly occupied levels close to
the Fermi level, which in our model are precisely those in the
semiconducting core.

If the superconducting region is small (an island), the total
number of electrons confined in it, nsc = ∑

iσ c†
iσ ciσ , is con-

trolled by the charging term Ec(n̂scn0)2, where Ec = e2/2C is
the charging energy with C the total capacitance of the SI,
and n0 is the gate voltage expressed in dimensionless units
signifying the most favorable electron number.

The quantum dot (QD) in the nanowire is described using
the Anderson impurity model:

HQD =
∑

σ

εnσ + Un↑n↓ +
∑

iσ

vic
†
iσ dσ + H.c. (6)

Here dσ annihilates a spin-σ electron in the QD level with
energy ε, while U is the electron-electron repulsion inside
the QD; nσ = d†

σ dσ . The QD hybridizes mainly with the
states in the semiconducting core (i.e., quasicontinuum An-
dreev levels) because they have a large overlap of their wave
functions with the QD orbital. We may thus take vi ≡ v for
i = 1, . . . , N∗, and zero otherwise.

The Zeeman terms are included both on the QD and on the
nanowire levels, pointing either along or perpendicular to the
SOC direction:

HZ =
∑

i

gscμBB · si + gqdμBB · Simp. (7)

The g factors may be different in nanowire and QD levels
and we assume that the magnetic field fully penetrates the
superconducting island (i.e., the penetration depth is assumed
to exceed the superconductor thickness). For simplicity, in
this work we set gsc = gqd ≡ g. When reporting the results
of calculation, we will express field strength in terms of
the Zeeman energy, EZ = gμBB. The results reported in the
following section will correspond to a magnetic field that is
perpendicular to the SOC direction.

B. DMRG solver for complex level structure

We have extended the implementation of the DMRG solver
for problems of coupled QDs and SC islands introduced in
Refs. [65,71] to enable numerical studies of the more general
Hamiltonian presented above. We were able to construct a
compact representation of H in terms of a matrix product
operators (MPO) of dimensions 13×13. Such a simple form
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is possible because of the factorization presented in Eq. (2).
The detailed form of the MPO is given in the Appendix. The
hybrid nanowire is modelled with N = 100 levels, n∗ = 10
of which corresponding to proximitized semiconductor states
and 90 to bulk superconductor states. We tuned the bulk
coupling α = 0.54 to set the bulk gap to � = 0.32, and α∗
so that the proximitized gap is half as large, �∗ = 0.16. We
set U/�∗ = 10. The charging energy is set to Ec = 0.24 =
(3/2)�∗.

In the presence of Coulomb interaction that leads to cor-
related electron dynamics, the system must be described in
terms of many-particle states that are not simple product states
of single-particle levels [65,71]. A case in point are quantum
impurities exhibiting the Kondo effect: the ground state is an
entangled state (spin singlet) formed between the impurity
local moment and the collective spin degree of freedom in
the Kondo cloud of itinerant electrons [72,73]. Spectroscopic
techniques probe transitions between pairs of many-particle
states that in general cannot be reduced to single-particle exci-
tations. This perspective is particularly insightful in quantum
impurity systems with superconducting baths: the Yu-Shiba-
Rusinov (YSR) subgap peaks correspond to electron-number
(�n = ±1) and spin (�Sz = ±1/2) changing transitions
between even-fermion-parity integer-spin states and odd-
fermion-parity half-integer-spin many-particle states [65,71].

C. Level-by-level collapse of pairing correlations
in magnetic field

Let us first consider the nanowire in isolation; the role of
the QD will be investigated later. Level i in the supercon-
ductor, assumed to be well separated from other levels (and
neglecting the SOC for now), remains in a paired state (i.e.,
a linear superposition of zero and double level occupancy,
(|0〉 + |2〉)/

√
2) for magnetic field strengths EZ < 2�̃i, where

�̃i corresponds to the pairing energy (“effective gap”) of level
i, with

�̃i = αi

α
�, (8)

so that �̃1 = �∗, etc. This follows directly from Eq. (2) in
the limit N∗ 
 N : the N − N∗ ≈ N levels generate the bulk
gap �, while the N∗ low-lying levels experience an effective
pairing field reduced by a proportionality factor of αi/α.

For EZ in excess of 2�̃i, it is energetically favourable for
the level i to become singly occupied so that it can reduce
its energy by EZ/2 by fully spin polarizing. This can be
interpreted as suppression of superconductivity in a single
SC level. A key observation is that in terms of many-particle
states, this change corresponds to a level crossing between
the states with spin polarization Sz and Sz + 1/2 that have
opposite fermionic parity. This implies that there will be a
series of such transitions as EZ increases past 2�∗, in step-by-
step manner for each of the N∗ low-lying proximitized states,
before the bulk superconductivity is eventually quenched to
the normal state at some higher field value.

This step-by-step process is illustrated in Fig. 5(a). The
calculation performed here corresponds to a toy model in
the N∗ 
 N limit without any self-consistency. We present
the many-particle energy spectrum as a function of EZ

for the case of a half-integer value of n0. For the chosen
value of n0, the two relevant states with odd nsc and even nsc

are those with nsc = n0 ± 1/2, which have the same charging
energy. In this case, the energies are controlled solely by the
competition between the pairing interaction and the Zeeman
effect. The most noteworthy feature of the plot is the envelope
of curves starting at EZ = 2�∗, where the collapsing of pair-
ing commences with the level i = 1 and the ground state Sz

starts to increase from 0 in steps of 1/2 with the increasing
magnetic field. The behavior of the low-lying excitations is
best represented by the energy difference between the lowest-
energy even and the lowest-energy odd many-particle states
shown in Fig. 5(d). The amplitude of these oscillations is con-
trolled by the gyromagnetic ratio g, which sets the slope, and
the distance between the level crossings, which is controlled
by the level spacing in the quasicontinuum.

When n0 is tuned away from a half-integer value, the
relative positions of integer and half-integer spin values (as
a function of EZ ) will shift. Close to even n0, the favored
low-lying states are those with even nsc and integer Sz, while
close to odd n0 the favored states have odd nsc and half-integer
Sz. These energy shifts due to the charging energy terms, com-
bined with the EZ -dependent energy changes seen in Fig. 5(d),
lead to a zigzag transition line between the odd and even
sectors close to half-integer n0 when the state diagram is
plotted in the (Ez, n0) plane, as in Fig. 5(g). The vertical axis
is denoted as δn, which measures the gate voltage offset from
some reference value nref corresponding to an even number of
electrons in the ground state of the SI, n0 = nref + δn.

In the presence of the SOC, the states differing by �Sz =
±1 mix with each other. All level crossings are thus replaced
by anticrossings due to level repulsion. In the toy-model cal-
culation discussed in this section, we take this effect into
account through off-diagonal matrix elements between the
states. In each charge sector, there is then a single low-lying
state with continuous evolution as a function of EZ : the ground
state in each sector is separated from the excited states with
the same fermionic parity by a finite gap whose minimal value
is proportional to the SOC strength λ. The corresponding level
diagrams are shown in Figs. 5(b) and 5(c) for two values of
λ. Importantly, it can be seen that close to EZ ≈ 2�∗, the
even (singletlike) and odd (doubletlike) states come close in
energy and then remain very close together, the more so for
larger λ values. This is even more clearly observed in the
energy differences plotted in Figs. 5(e) and 5(f): the even-odd
oscillations induced by the discrete nature of Andreev levels
in the quasicontinuum are progressively washed out. Finally,
the level pinning is also revealed in the (EZ , n0) diagrams:
the zigzag line separating even and odd-parity domains is
replaced by a straight line exactly at half-integer values of n0,
leading to the 1e-1e periodicity of the charging diagram in this
range of EZ , see Figs. 5(h) and 5(i).

D. Role of Yu-Shiba-Rusinov states in magnetic pinning

We now consider the full problem with the QD coupled
to the SI. We will show that the general picture established
in the previous section remains valid in the presence of a
QD for high enough magnetic field, irrespective of the QD
electron filling (gate voltage tuning) and hybridization. These
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FIG. 5. Magnetic pinning in nanowires from the perspective of many-particle states. Here we present the results of a toy model calculation.
The columns correspond to increasing strength of the SOC with (left to right) λ = 0, λ/�∗ = 0.075, λ/�∗ = 0.15. [(a)–(c)] Energies of
many-particle eigenstates vs Zeeman energy; red lines correspond to odd (doubletlike), black lines to even (singletlike) states; the character
of the ground state in a given EZ interval is indicated through the color of the thick line at the bottom of the plots, the vertical dashed
lines indicates the values of EZ where the ground-state parity switches. Here δn = 0.5. [(d)–(f)] Close-up on the energy differences between
the lowest integer (even, singlet-like) and lowest half-integer (odd, doubletlike) states. Here δn = 0.5. [(g)–(i)] Ground-state diagram in the
(EZ , δn) plane. Yellow corresponds to odd and blue to even total occupation in the ground state. We define δn through n0 = nref + δn with even
integer nref .

two factors only affect the part of the phase diagram in the
(n0, EZ ) space for weak and moderate fields before the su-
perconducting state starts collapsing and the phase diagram
reflects the properties of the coupled QD-SI system. For larger
fields, when the superconductivity starts collapsing, the phase
diagram depends mostly on the physics in the SI region. In
other words, the large-field “magnetic pinning” behavior is
found to be very universal.

To demonstrate these claims we study an illustrative case
of a QD with U = 10�∗, Ec/�

∗ = 1.5, with N∗ = 10 An-
dreev levels ranging from �∗ to the bulk gap of � = 2�∗.
The QD hybridizes with these ten levels with the hopping
amplitude v = 0.09, which corresponds to the regime of low
hybridization. All energies are again given in units of the
half-bandwidth. Let us consider first the case of a half-filled
quantum dot at weak magnetic fields. Since U is relatively
large, the local moment on the QD site is well defined. For

even tuning of δn0, the ground state is the YSR doublet be-
cause of the weak hybridization. For odd tuning of δn0, there
is a Bogoliubov quasiparticle sitting in the SI which interacts
antiferromagnetically with the QD spin via Kondo exchange
coupling to produce the YSR singlet ground state. In the
absence of the field, the SOC does not affect the results in any
qualitative way, it only slightly shifts the boundary between
the doublet and the singlet domains, see panels (a), (d), and
(g) in Fig. 6. With increasing magnetic field the doublet region
grows in size due to the energy gain from the Zeeman effect.
At a certain value of EZ the Zeeman energy overcomes the
Kondo binding energy in the odd-δn0 regions. At this point
the spins on the QD and in the SI align: the singlet ground
state is replaced by a triplet. In the absence of SOC this is
a sharp phase transition (level crossing), see Fig. 6(a), while
in the presence of SOC this is a smooth crossover because the
singlet and triplet sectors mix, see Figs. 6(d) and 6(g). Beyond
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FIG. 6. Evolution of spin and charge state with increasing field in the SI-QD model. (a), (d), (g) Spin polarization as a function of Zeeman
field EZ and the SI gate voltage δn0. (a) Negligible SOC, λ = 0.02. (d) Intermediate SOC, λ = 0.2. (g) Strong SOC, λ = 0.5. The central
(orange) region corresponds to the doublet state: for even δn and relatively weak hybridization, the ground state for low EZ is the “decoupled
spin” state. This region is surrounded by the singlet state, where odd δn tuning provides a quasiparticle that binds antiferromagnetically with
the QD spin to form the YSR singlet. At stronger fields, the YSR triplet with ferromagnetic alignment wins over instead. At EZ = 2�∗ = 0.32
the partial collapse of superconductivity commences, leading to a rapid stepwise increase in the spin polarization of the ground state. [(b),
(e), and (h)] Charge state vs EZ and δn0. The superimposed black lines correspond to the charge degeneracy lines where enhanced transport
through the device is expected. For EZ � 2�∗ these lines show 1e-1e periodicity, and they become increasingly flat, smooth and parallel with
increasing SOC strength. [(c), (f), and (i)] Line cuts from (a), (d), and (g) at δn0 = 0 and δn0 = 0.8 starting from the doublet and singlet ground
state at zero field, respectively. The SOC-induced mixing between the eigenstates with �Sz = ±1 has multiple effects: (1) the singlet-triplet
cross-over moves to lower EZ and becomes increasingly smooth, (2) the EZ < 2�∗ lines become curved, and (3) the EZ > 2�∗ spin expectation
values in even and odd sectors smooth out and practically coincide at high λ. (White dots in the figures are numerical artifacts.)

the transition/cross-over point, the doublet region shrinks in
size with increasing magnetic field because the energy gain
from the Zeeman effect is larger for the triplet than for the
doublet. Finally, for EZ = 2�∗, we observe the beginning
of the gradual collapse of superconductivity in the Andreev
levels, with the spin expectation values increasing in steps of
1; this is revealed most clearly in Fig. 6(c) showing line-cuts at
constant δn. These stepwise changes occur at slightly different
values of EZ for odd and even n0 tuning, giving rise to the
zigzag pattern of the phase boundaries, see Fig. 6(b). With

increasing SOC, we observe the phenomenon described in the
previous section: the mixing of states differing by �Sz = ±1
washes out the steps and gives rise to a smooth EZ depen-
dence, compare panels (c), (f), and (i) in Fig. 6. Surprisingly,
not only are the energy curves for even and odd n0 tuning
smooth and parallel, they are in fact nearly overlapping. (One
should recall that in the presence of SOC the total spin is not
conserved and that the expectation value of its z component is
not pinned to half-integer or integer values.) In this regime, the
total spin remains constant as a function of n0 even if the total
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FIG. 7. Spin and charging diagrams as functions of QD gate voltage ν and SI gate voltage δn0 at strong SOC λ = 0.5 for increasing
magnetic field strength. [(a) and (b)] Zero field limit, EZ = 0.001. [(c) and (d)] Intermediate regime, EZ = 0.2. (e,f) Partially collapsed SC
regime: EZ = 0.35. [(a), (c), and (e)] Spin polarization. [(b), (d),and (f)] Charge state. For low field, we observe the conventional charging
diagram of the QD-SI device with doublet GS for odd total occupancy and singlet GS for even occupancy. With increasing EZ , the boundary
lines become flatter and we observe the singlet-triplet crossover between even-even and odd-odd gate tuning. For strong field, where EZ > 2�∗

we see the consequences of the partial SC collapse: as a function of δn0, there is very little variation in spin polarization (as a function of ν,
however, one can still switch by a unit of 1/2) and the separation of charge degeneracy lines is 1e-1e. (Small blotches in the figures are
numerical artifacts.)

electron number is changing in steps of 1. This is the most
characteristic feature of the observed pinning phenomenon
and explains the near-perfect flatness of the boundary lines
for sufficiently large SOC.

The robustness of 1e-1e pinning of the charge regions is
clearly illustrated by considering the results in the (ν, n0) gate-
voltage plane. In Fig. 7 , we consider the case of strong SOC
for a range of fields. For zero field, Figs. 7(a)–7(c), we find the
typical diagram of even (singlet-like) and odd (doublet-like)
regions whose widths (in horizontal and vertical direction)

depend on the energy balance, controlled by the charging
energies U and Ec, the pairing �, and the hybridization-
dependent binding energy EB(v). For intermediate fields,
Figs. 7(d)–7(f), the diagrams become more complex and in-
clude both triplet regions (for the case where both ν and n0 are
odd) and singlet regions (for ν and n0 both even), as well as the
doublet range (for the case where one of ν and n0 is odd). We
note that the boundaries are more parallel (less curved): the in-
creased spin polarization implies decreased electron hopping
because of the Pauli exclusion principle. The region widths
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are still alternating in the vertical direction (i.e., as a function
of n0), but less so in the horizontal direction (i.e., as a function
of ν). For fields EZ > E∗

Z = 2�∗, Figs. 7(g)–7(i), the spacing
in the vertical direction becomes uniform, showing the 1e-1e
pattern. In addition, the horizontal width of the regions no
longer depends on the electron parity in the superconductor,
which can be observed in both the spin and charge stability
diagrams. In this regime, the QD and the SI are effectively
almost decoupled.

IV. DISCUSSION

The results for the QD-SI system, in particular the oc-
currence of the 1e-1e charging pattern for sufficiently large
magnetic field, demonstrate the universality of the magnetic
pinning mechanism in hybrid nanowires with a quasicontin-
uum of Andreev levels and a sizable SOC: the QD parameters
and the details of QD-SI coupling only affect how the low-
field behavior of the QD connects with the high-field 1e-1e
regime. The spectroscopically observed superconducting “gap
closure” is thus above all an indication that the pairing corre-
lations in the quasicontinuum states have started collapsing.
The SOC leads to a near degeneracy between the lowest-lying
even and odd fermion-number-parity states at half-integer n0,
which results in a zero-bias anomaly for B > B∗. The first
finite-energy excitation is another pair of degenerate even
and odd states, with the excitation energy controlled by the
strength of the SOC. Following the initial gap closure at B =
B∗, in bias spectroscopy one will thus observe gap reopening
for B > B∗.

This behavior (zero-bias anomaly, gap reopening, 1e-1e
charging pattern) are consistent with the existence of Ma-
jorana zero modes [74] localized at the ends of the hybrid
nanowire [75–78]. Strictly speaking, our model by itself nei-
ther supports nor disproves such interpretation, because it is
formulated in the orbital/energy space: levels indexed by i
are Kramers-pair eigenstates of the noninteracting part of the
nanowire Hamiltonian [79] and in this work we make no as-
sumptions about the real-space properties of these levels (such
as their localization and spatial extent). There are several
commonalities between the models for Majorana zero modes
in hybrid nanowires and our Hamiltonian. For example, the
partial collapse of superconductivity due to polarization of
low-lying Andreev levels can be put in correspondence with
the need to obtain effectively spinless superconductors by
spin-polarizing electrons with the field in Majorana nanowire
models [75,76]. Nevertheless, the most that we can infer
from our work on this question is that the zero-bias anomaly
and the 1e-1e pattern are generic features of this class of
Hamiltonians [80] rather than strong signatures of Majorana
modes [81]. Additional evidence is necessary for claims of
Majorana zero mode existence [25,82]. Since our model is
agnostic as regards the properties in real space, there is no
requirement for the potential to be smooth; the generality of
this Majorana-mimicking behavior is thus greater than that
described in Refs. [83,84].

We would like to emphasize the utility of consider-
ing this problem from the many-particle perspective. The

single-particle approach based on the mean-field picture of
superconductivity is not suited for problems where the elec-
tron confinement effects are important. In particular, in the
presence of Kondo correlations, the single-particle approach
is simply not adequate. But even if electron-electron correla-
tions are not particularly strong, the physical interpretation of
phenomena can be simpler and more transparent in terms of
many-particle states with well defined total charge. The mix-
ing of many-particle states with different magnetic quantum
numbers Sz due to SOC is a case in point.

V. CONCLUSION

In this work, we explored the magnetic field dependence
in several hybrid nanowire devices containing quantum dots
and/or superconducting islands. We argued that these de-
vices have a complex spectrum of Andreev levels due to
the hybridization between the states from both sides of the
semisuper interface. We devised a quantum impurity model
that incorporates such a bath in a simplified way, and showed
how Hamiltonians from this family can be solved using the
DMRG method. The results uncovered a ubiquitous occur-
rence of 1e-1e charging patterns for large magnetic fields in
the presence of spin-orbit coupling. We argued that this results
from the mixing of many-particle states with different values
of magnetic quantum number Sz that results in level repulsion.

A possible extension of our work, on the side of theory,
could go in the direction of higher realism: the coefficients
εi, αi j , λσ

i j could be derived from realistic real-space mod-
els that take a proper account of the crystal properties of
materials (including disorder), geometry of the device, po-
tential energy landscape (including the role of gate voltages
on metal electrodes), and in particular the detailed properties
of the semisuper interface where the states from both sides
hybridize. Such realistic model could also serve to produce
reference results for controlled experiments designed to more
stringently test the hypothesis of partial step-by-step collapse
of superconductivity formulated in this work.

The raw experimental data, input files for calculations, and
data processing and plotting scripts are available on the data
repository Zenodo, Ref. [85].
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APPENDIX: MATRIX PRODUCT OPERATOR REPRESENTATION

The matrix product representation of the Hamiltonian from Sec. III is H = ∏N
i=0 Wi. The first element is a vector and defines

the site with the quantum dot.

W0 =
(

I

[
εn̂QD + EZ

2
(n̂QD↑ − n̂QD↓) + EX

2
(S+ + S−) + Un̂QD↑n̂QD↓

]
− d↑F1 − d↓F1 d†

↑F1 d†
↓F1 0 0 0 0 0 0 0

)
. (A1)

dσ are the quantum dot operators and n̂QD,σ = d†
σ dσ and n̂QD = n̂QD,↑ + n̂QD,↓. Fj = (−1)n̂ j is the local fermionic parity operator.

It takes care of the fermionic anticommutation rules by giving a factor of −1 if the j-th level is occupied by a single particle. EZ

is the Zeeman splitting due to the magnetic field in the z direction and EX in the x direction, with S+ = d†
↑d↓ and S− = d†

↓d↑ the
spin raising and lowering operators. The SOC direction is along the x axis, thus EZ corresponds to a perpendicular, and EX to
parallel magnetic field.

A general site j of the system is represented by a matrix:

Wj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Xj 0 0 0 0 0 0 0 c j↓ c j↑ c†
j↓ c†

j↑
0 I 0 0 0 0 0 0 0 0 0 0 0

0 v jc
†
j↑ Fj 0 0 0 0 0 0 0 0 0 0

0 v jc
†
j↓ 0 Fj 0 0 0 0 0 0 0 0 0

0 v jc j↑ 0 0 Fj 0 0 0 0 0 0 0 0

0 v jc j↓ 0 0 0 Fj 0 0 0 0 0 0 0

0 y jc
†
j↑c†

j↓ 0 0 0 0 1 0 0 0 0 0 0

0 y jc j↓c j↑ 0 0 0 0 0 1 0 0 0 0 0

0 n̂ j 0 0 0 0 0 0 1 0 0 0 0

0 iλc†
j↑ 0 0 0 0 0 0 0 Fj 0 0 0

0 iλc†
j↓ 0 0 0 0 0 0 0 0 Fj 0 0

0 iλc j↑ 0 0 0 0 0 0 0 0 0 Fj 0

0 iλc j↓ 0 0 0 0 0 0 0 0 0 0 Fj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

where the on-site potential term for the jth level is

Xj = [ε j + Ec(1 − 2n0)]n̂ j + EZ

2
(n̂ j↑ − n̂ j↓) + EX

2
(S+

j + S−
j ) + (

y2
j g + 2Ec

)
n̂ j↑n̂ j↓. (A3)

g = 2α/N is a measure of the pairing potential with y j its modulation, so that αi j = yiy jα. The spin orbit coupling is λ. To
account for level-dependent SOC, a similar procedure as with the modulation of pairing can be implemented.

Finally, the last, N th, superconducting level is represented by a vector:

WN = (XN 1 vN c†
N↑ vN c†

N↓ vN cN↑ vN cN↓ c†
N↑c†

N↓ cN↓cN↑ n̂N iλc†
N↑ iλc†

N↓ iλcN↑ iλcN↓). (A4)
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