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Auxiliary master equation approach to the Anderson-Holstein impurity problem out of equilibrium
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We introduce a method based on the auxiliary master equation for solving the problem of an impurity with
local electron-electron and electron-phonon interaction embedded between two conduction leads with a finite-
bias voltage. The Anderson-Holstein Hamiltonian is transformed to a corresponding Lindblad equation with a
reduced set of sites, providing an optimal approximation of the hybridization function. The problem is solved
in the superfermion representation, using a configuration interaction for fermions and bosons. The phonon basis
is shifted and rotated with the intention of permitting a low phonon basis cutoff, even in the strong-coupling
regime. We benchmark this approach with the numerical renormalization group in equilibrium, finding excellent
agreement. We observe, however, that the rotation brings no advantage beyond the bare shift. This is even more
apparent out of equilibrium, where issues in convergence with respect to the size of the phononic Hilbert space
occur only in the rotated basis. As an application of the method, we explore the evolution of the phononic peak
in the differential conductance spectra with changing phonon frequency.
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I. INTRODUCTION

Molecular electronics is the endeavor of using single
molecules as components in ultraminiaturized circuits, mak-
ing use of their particular electronic and vibration properties
[1–14]. Nonequilibrium properties of single molecules can be
probed by embedding molecules in gaps between electrodes
[15], in mechanically controlled break junctions [16], as well
as using scanning tunneling spectroscopy [17,18]. In these
setups it is possible to apply bias voltages that are large
compared to characteristic energy scales of the problem, such
as interlevel spacing, phonon frequency, and electron-electron
repulsion. Spectroscopic measurements are, however, difficult
to interpret, because the strongly interacting problems are
difficult to solve reliably and accurately out of equilibrium.
A number of theoretical tools have been developed in the past
[19–31], but no method has emerged yet as the ultimate so-
lution applicable to all parameter domains. The key effective
parameters are the dimensionless coupling strength λ = g/ωb,
the adiabatic parameter α = ωb/U that relates electronic and
vibrational energies, as well as the ratio �/U that quanti-
fies the impurity hybridization; here g is the electron-phonon
(e-ph) coupling constant, ωb the phonon frequency, U the
electron-electron repulsion, and � the hybridization strength.
The parameters λ and α allow one to define the limiting cases
of weak and strong e-ph coupling (λ � 1 vs λ � 1), as well
as the adiabatic and the antiadiabatic limits (α � 1 vs α � 1);
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the regime away from the various limits is known as the
intermediate (crossover) regime.

In Ref. [19] the electron-vibron coupling in the Kondo
regime is investigated using the Schrieffer-Wolff transfor-
mation, where the parameter regime is restricted to weak
coupling. The semiclassical approach presented in Ref. [20]
goes beyond the mean-field decoupling of electrons and
phonons, and coincides well with quantum Monte Carlo re-
sults for sufficiently high temperatures. However, due to its
nature it misses quantum processes like tunneling, so in
the current implementation lower temperatures may not be
reached. For a nonequilibrium equation-of-motion approach,
implemented in Ref. [21], the authors point out that results
obtained by their method in the Kondo regime are ques-
tionable beyond the low-bias regime. Reference [22] applies
the dynamical mean-field theory to the Holstein-Hubbard
model by solving the resulting the Anderson-Holstein impu-
rity problem using quantum Monte Carlo; good results are
obtained, but only in equilibrium. The authors of Ref. [23]
use the numerical renormalization group (NRG) to obtain
equilibrium spectral functions. To obtain the tunneling cur-
rent, however, they use perturbation theory, which is restricted
to the strong-coupling regime. In Ref. [24] the noncrossing
approximation is implemented, which allows exploration of
the Kondo regime at finite voltage; however, the electron-
vibron coupling is restricted to small values. This approach
is also used in Ref. [25], where the authors explore the ef-
fect of electron-vibron coupling in the Kondo regime for
large Coulomb repulsion. An implementation of the func-
tional renormalization group is shown in Ref. [26] (see also
[32]), where good results are obtained in and out of equi-
librium; however, the authors point out that their results are
questionable for large electron interaction strength U out of
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equilibrium. The nonequilibrium dual-boson approach shown
in Ref. [27] appears quite similar to the approach presented
in this work, with two main differences. First, they have a
smaller bath, which they compensate by taking into account
the difference between the physical and the auxiliary bath
perturbatively. Second, they consider a phononic bath, which
we do not. The authors obtain good results, but it appears to
us that our method reproduces the Kondo peak more precisely;
this can be observed from the coincidence of our self-energy
results with the ones obtained by the NRG. Reference [28]
discusses the hierarchical quantum master equation (HQME)
approach in the context of electron-vibron coupling. This ap-
proach allows for numerically exact results but is restricted to
moderate to high temperatures. One should mention, however,
Ref. [29], where the HQME approach is extended for the
pure electronic Anderson model, and accurate results for small
temperatures are shown. Hierarchical equations of motion,
Ref. [30], can handle non-Markovian system-bath interaction,
but it may be difficult to keep truncation errors small. The
NRG has been extended to the nonequilibrium steady-state
case [31], but the proper description of thermal leads is tech-
nically demanding and requires combining several numerical
methods to handle different energy scales (i.e., the NRG alone
is not sufficient); this approach has not yet been applied to the
Anderson-Holstein Hamiltonian.

In this work we present the auxiliary master equation ap-
proach for the Anderson-Holstein impurity problem [33–38].
Considering the above discussion, the method presented here
complements the existing methods by bridging between dif-
ferent values of parameters, from weak to strong hybridization
as well as interactions, and, importantly, by allowing tempera-
tures below the Kondo scale to be reached for moderate values
of the interaction. This Hamiltonian is the minimal description
of a molecule with a single low-energy orbital with effec-
tive on-site electron-electron repulsion and with the coupling
between the on-site charge and the displacement of a local
vibration mode, embedded between two metallic conduction
leads. The goal is to solve this problem in the regime of sizable
electron-electron (e-e) and electron-phonon (e-ph) coupling
for large bias voltages and to calculate the differential conduc-
tance, which is the main experimentally measurable quantity
that provides information on the excitations in the system.

The paper is structured as follows. In Sec. II we start
by discussing the basic idea of the auxiliary master equa-
tion approach (AMEA). We continue by briefly reviewing our
implementation of configuration interaction (CI) for the elec-
trons in Sec. II E 1 and discuss in more detail the CI treatment
of phonons in Sec. II E 2. In Sec. III we first elaborate on
the choice of method parameters. Then we benchmark the
differential conductance against the numerical renormaliza-
tion group in equilibrium in Sec. III B and show differential
conductance results out of equilibrium in Sec. III C.

II. MODEL AND METHOD

A. Nonequilibrium Green’s functions

We use the Keldysh formalism [39–44]. The time contour
from t → −∞ to t → ∞ and back again leads to a 2 × 2
matrix structure for including all time combinations, i.e., both

ω

DOS

ω

DOS

�
t′R�

t′L
U

μL, T

μR, T

g, ωb

FIG. 1. Schematic representation of the system. Two leads at
different chemical potentials are connected to an impurity with a
Hubbard interaction U and a coupling to a Holstein phonon.

times on the upper contour, one above, and one below, etc.
Since we are only interested in the steady state, we can take
advantage of time translation invariance and fix one time argu-
ment of the Green’s functions to zero. This allows us to work
directly in the frequency domain instead of the time domain.
The general form of a Green’s function is then

G(ω) =
(

GR(ω) GK(ω)
0 GA(ω)

)
, (1)

where GA = (GR)†. Throughout this paper, underlined quan-
tities represent a 2 × 2 structure in Keldysh space. In
equilibrium, GK can be determined from GR via the
fluctuation-dissipation theorem as

GK(ω) = F (ω)2iIm[GR(ω)], (2)

with

F (ω) =
{

coth βω

2 for bosons,

tanh βω

2 for fermions.
(3)

B. Physical impurity model

The physical setup consists of an impurity, two electronic
reservoirs, and one local phonon mode, as depicted in Fig. 1.
The respective Hamiltonian may be split up as

H = Himp + Hbath + Hcoup. (4)

Himp is the Hamiltonian of the impurity,

εimp

∑
σ

d†
σ dσ + Und↑nd↓ +

∑
σ

gd†
σ dσ (b + b†) + ωbb†b,

(5)

with Hubbard interaction U , on-site energy εimp, the creation
(annihilation) operator d†

σ (dσ ) of a fermion at the impurity
site with spin σ , the creation (annihilation) operator b† (b) of
a boson, the fermionic particle number operator ndσ , electron-
phonon interaction strength g, and phonon frequency ωb. The
leads are described by

Hbath =
∑
kλσ

ελka†
λkσ

aλkσ , (6)

with dispersion ελk and creation (annihilation) operator a†
λkσ

(aλkσ ) of a fermion in the left and right lead, λ ∈ {L, R},
labeled by momentum k. The coupling between the impurity
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and the bath is given by

Hcoup = 1√
Nk

∑
kλσ

t ′
λ(a†

λkσ
dσ + d†

σ aλkσ ), (7)

where t ′
λ is the coupling strength between the leads and the

impurity, and Nk → ∞ is the number of k points. Whenever
not mentioned otherwise, we have t ′

L = t ′
R.

Alternatively, the environment may be described in terms
of Green’s functions by defining the retarded hybridization
function [45]

	R
phys(ω) =

∑
λ

t ′2
λ gR

λ
(ω), (8)

where gR
λ

(ω) are the retarded Green’s functions of the de-
coupled leads. (The subscript ph here stands for “physical”
in order to distinguish this hybridization function from the
auxiliary function to be defined in the next section.) To fully
define the problem, one needs to specify the band properties.
We chose a flat density of states smoothed around the edges
so that

−Im
[
gR

λ(ω)
] = π

2D
ρFD(ω − D, Tfict)ρFD(−ω − D, Tfict),

(9)
where ρFD is the Fermi-Dirac distribution, Tfict a fictitious
temperature, and D the half bandwidth. The smoothing is
introduced to avoid a sharp change that would reduce the
quality of reproducing the environment within AMEA; Tfict

merely quantifies the degree of smoothing. We take our en-
ergy unit E0 such that D = 10E0. Then we set Tfict = 0.5E0

throughout this paper. In Figs. 4–6(a) and 6(c) we have
−Im[	R

phys(ω = 0)]/E0 = 1, in Figs. 8 and 6(b) and 6(d) we
have −Im[	R

phys(ω = 0)]/E0 = 0.49, and in Fig. 7 we have
−Im[	R

phys(ω = 0)]/E0 = 0.64.
Since the uncoupled leads themselves are in equilibrium,

the Keldysh part of their Green’s function can be calculated
using the fluctuation-dissipation theorem, Eqs. (2) and (3).
If not stated otherwise, the chemical potentials of the right
and left reservoir are given as μR = −μL = φ/2, i.e., φ = eV
describes the voltage drop across the impurity.

C. Auxiliary impurity model

Since the physical model is defined in an infinitely large
Hilbert space, one has to find a way of approximating it for
numerical computations on a reduced set of sites. The basic
idea of the AMEA is to set the parameters of the Lindblad
equation so as to reproduce the physical hybridization func-
tion [46].

The Lindblad equation is given as

dρ(t )

dt
= ˆ̂Lρ

= −i[Haux, ρ] +
∑
i jσ

�
(1)
i j

(
c jσ ρc†

iσ − 1

2
{c†

iσ c jσ , ρ}
)

+
∑

i j

�
(2)
i j

(
c†

iσ ρc jσ − 1

2
{c jσ c†

iσ , ρ}
)

,

(10)

where c†
iσ (ciσ ) is the fermionic creation (annihilation) op-

erator, ρ is the density matrix, �
(1)
i j and �

(2)
i j describe

the dissipative contributions, and Haux is the unitary part,
given as

Haux =
∑

σ
i, j:〈i j〉∧(i, j)�=(0,0)

Ei jc
†
iσ c jσ + Un f ↑n f ↓

+
∑

σ

gc†
f σ c f σ (b + b†) + ωbb†b

=
∑

σ
i, j:〈i j〉∧i, j �=0

Ei jc
†
iσ c jσ

︸ ︷︷ ︸
Haux env

+
∑

i∈{−1,1},σ
E f ic

†
iσ c f σ + H.c.

︸ ︷︷ ︸
Haux coup

+∑
σ εimpc†

f σ c f σ + gc†
f σ c f σ (b + b†)

+Un f ↑n f ↓ + ωbb†b

}
Haux imp .

(11)

We define f := 0, which is the impurity site, and the indices
i and j can assume integer values from −NB/2 to NB/2,
where NB is the number of bath sites. In this paper we only
consider cases in which NB = 6. This number of bath sites
already allows for a large number of parameters, which can be
seen when considering that the � matrices are only restricted
to be positive semidefinite. In other words, the number of
parameters used to fit 	aux to 	phys increases quadratically in
NB. In Ref. [46] it is furthermore explicitly shown that NB = 6
suffices to reproduce a flat density of states accurately.

The part of Haux denoted as Haux imp is equivalent to Himp.
Haux coup describes the coupling between the auxiliary reser-
voirs and the impurity, i.e., its parameters are set by t ′

λ. All the
other contributions appearing in Eq. (11) are determined in a
fitting procedure, which we will discuss in the following.

The auxiliary hybridization function 	aux is defined
through

G0 f f = (g
0
− 	aux)−1 →

	R
aux(ω) = 1/gR

0, f f (ω) − 1/GR
0, f f (ω),

	K
aux(ω) = GK

0, f f (ω)
/∣∣GR

0, f f (ω)
∣∣2

,

(12)

where G0 f f is given [46] by

GR
0 (ω) = [ω − E + i(�(1) + �(2) )]−1,

GK
0 (ω) = 2iGR

0 (ω)(�(2) − �(1) )GA
0 (ω)

(13)

and gR
0, f f as

gR
0, f f (ω) = (ω − εimp)−1. (14)

A note on notation: Bold quantities indicate the (NB + 1) ×
(NB + 1) structure in the space of auxiliary levels, lowercase
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g indicates the decoupled setup, uppercase G contains the
coupling, and the index 0 indicates the noninteracting case.

Given the physical hybridization function 	ph, one defines
a cost function

χ (E,�(1),�(2) ) =
∑

α∈{R,K}

∫ ∞

−∞
dωW α (ω)

× Im
[
	α

phys(ω) − 	α
aux(ω; E,�(1),�(2) )

]2
,

which must be minimized to obtain the parameters leading
to the optimal approximation of the physical hybridization
function.

In this paper we set the weight function to W α (ω) =
�(|ω − ωmax|), with ωmax/E0 = 15. This range suffices to
capture the hybridization function appropriately, since our flat
density of states ranges from ω/E0 = −10 to 10 and decays
exponentially outside this region. A more detailed discussion
about the fitting procedure can be found in Ref. [46].

D. Superfermion representation

For computational reasons, one may transform the Lind-
blad equation into the superfermion representation [47]. In
this form the Lindbladian becomes a matrix and the density
matrix a vector. In this section we will briefly sketch the basic
ideas of this procedure roughly following Ref. [47], see also
Refs. [48,49].

We introduce the left vacuum [50] defined as

|I〉 =
∑

{mel,mph}
(|mel〉 ⊗ |mph〉)︸ ︷︷ ︸

normal space

⊗ (|m̃el〉 ⊗ |m̃ph〉)︸ ︷︷ ︸
tilde space

, (15)

where mel and mph run over all states in the respective Hilbert
spaces. Here we doubled the Hilbert space by introducing the
“tilde” space.

Then we apply the density matrix on the left vacuum:

ρ → |ρ〉 = (ρ ⊗ 1̃) |I〉

=
(∑

mn

ρmn |m〉 〈n| ⊗ 1̃

)⎛
⎝∑

j

| j〉 ⊗ | j̃〉
⎞
⎠

=
∑
mn j

ρmn(|m〉 〈n| j〉) ⊗ | j̃〉 =
∑
mn

ρmn |m〉 ⊗ |ñ〉 .

(16)

This yields a vector in the doubled Hilbert space that contains
all information of the density matrix. As the next step, the
Lindbladian must also be transformed accordingly. The aim is
to replace all density matrices appearing in L with |ρ〉. There-
fore we calculate L |I〉, and whenever |I〉 is next to ρ we can
use Eq. (16). To achieve this one uses the tilde-conjugation
rules, given as

c†
j |I〉 = −ic̃ j |I〉 ,

c j |I〉 = −ic̃†
j |I〉 ,

b† |I〉 = b̃ |I〉 ,

b |I〉 = b̃† |I〉 ,

(17)

-2 -1 0 1 2U

-̃2 -̃1 0̃ 1̃ 2̃Ũ

normal space

tilde space

g, ωb

g, ωb

t′Rt′L

t′Rt′L

FIG. 2. Schematic representation of the auxiliary system.

since the creation and annihilation operators, once transferred
into the tilde space, commute with the density matrix [51]
and anticommute (fermionic) or commute (bosonic) with the
normal-space operators. The Lindbladian then takes the form

iL =
∑

σ

c†
σ hcσ − 2Tr(E + i�)

+ U (n f ↑n f ↓ − ñ f ↑ñ f ↓)

+ωb(b†b− b̃†b̃) + g[c†
f σ c f σ (b + b†) − c̃†

f σ c̃ f σ (b̃ + b̃†)]︸ ︷︷ ︸
iLeph

,

(18)

with the matrix

h =
(

E + i� 2�(2)

−2�(1) E − i�

)
, (19)

where c†
σ = (c†

−NB/2, σ , . . . , c†
NB/2, σ , c̃−NB/2, σ , . . . , c̃NB/2,σ ),

� = �(2) − �(1), and � = �(2) + �(1). As defined in Sec. II C,
the impurity site is indexed f := 0. Figure 2 shows the Lind-
blad setup in its superfermion form [52], where the blue lines
represent the unitary contributions (E) and the green ones the
dissipative contributions (�(1/2)). Furthermore, since the Lind-
bladian in Eq. (18) is not a superoperator anymore, it does not
carry the double hat. This also allows us to easily distinguish
between superoperators and operators in superfermion space.

As can be deduced from Eq. (18), normal and tilde
fermionic particles are always created and annihilated simul-
taneously and therefore their difference is conserved, i.e.,

Nσ − Ñσ =
∑

i

(c†
iσ ciσ − c̃†

iσ c̃iσ ). (20)

This is valid for both spins separately, since angular momen-
tum is also conserved.

Since the left vacuum is always a left eigenstate of the
Lindbladian with eigenvalue zero, it lies in the subspace
Nσ − Ñσ = 0. This can be observed from Eq. (15), since all
fermionic states have by definition the same number of normal
and tilde electrons. Since the corresponding right eigenvector
is the steady state, it is restricted to the same subspace.
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The fermionic Green’s functions can be expressed in the
Lehmann representation. For positive times (+) the greater
(>) and lesser (<) component are given as

G>+
i j (ω) =

∑
k

〈I| ci |kR〉 〈kL| c†
j |ρ∞〉 1

ω − iLk

,

G<+
i j (ω) =

∑
k

〈I| c†
j |kR〉 〈kL| ci |ρ∞〉 1

ω + iLk

,

(21)

where 〈kL| and |kR〉 are the left and right eigenvectors of the
Lindbladian and Lk the corresponding eigenvalues. From this
all other fermionic Green’s functions of interest, as well as the
self-energy (�), can be obtained:

G≷−
i j (ω) = −[G≷+

ji (ω)]∗,

GR
i j (ω) = G>+

i j − G<−
i j ,

GK
i j (ω) = G>+

i j + G<+
i j − G>−

i j − G<−
i j ,

�R(ω) = 1/GR
0 (ω) − 1/GR(ω),

�K(ω) = −GK
0 (ω)/

∣∣GR
0 (ω)

∣∣2 + GK(ω)/
∣∣GR(ω)

∣∣2
.

(22)

For bosonic Green’s functions there exist similar expressions
as Eqs. (21) and (22). Computationally, we calculate the
steady state using the biconjugate gradient method, and the
Green’s function using the bi-Lanczos scheme [53]. The basis
used to express L is obtained as described in the next section.

E. Configuration interaction

The most straightforward basis choice for L is in terms of
c/c† and b/b† operators. Then one can perform the calcula-
tion using the full many-body Lindbladian using a cutoff in
the number of included phonons. The resulting matrix grows
exponentially in the system size NB. Therefore we rotate the
bosonic and fermionic single-particle operators with the aim
of cutting off the fermionic states in a controlled way and ob-
taining a reduced cutoff in the bosonic states. This is discussed
in the following sections, where we roughly follow Ref. [54].

1. Electrons

The treatment of electrons in the AMEA using CI is ex-
plained in detail in Ref. [55]. Here we will only give a brief
overview of the main steps. We start by defining

Ei jσ = Ei j + U 〈n f σ̄ 〉 δi f δ j f − 2
g2 〈n f 〉

ωb
,

hσ =
(

Eσ + i� 2�(2)

−2�(1) Eσ − i�

)
,

(23)

where 〈n f σ 〉 = 〈I| c†
f σ c f σ |ρ∞〉 and 〈n f 〉 = 〈n f ↑〉 + 〈n f ↓〉.

Here Eσ (and thereby hσ ) takes into account the electron-
electron and electron-phonon (the origin of the phononic term
will become clear in the following, see Sec. II E 2) interaction
on a mean-field level.

The matrix Eσ is in principle the same for both spins, since
there is no magnetic term in the Lindbladian. We showed
in Ref. [55] that choosing a spin-dependent (magnetized)
Hartree-Fock term reduces the error originating from the

basis cutoff we introduce within CI. The respective mean-field
(Hartree-Fock) Lindbladian reads

iL0el =
∑

σ

c†
σ hσ cσ −

∑
σ

Tr(Eσ + i�)

︸ ︷︷ ︸
η

. (24)

In our previous paper we fixed 〈n f ↑〉 = 0.3 and 〈n f ↓〉 = 0.7
to introduce an artificial magnetization. The exact values for
〈n f σ 〉 do not have a strong influence on the shape of the impu-
rity Green’s function, as long as it is far enough from 〈n f ↑〉 =
〈n f ↓〉 but not too far (roughly in the range 0.6–0.9). Since
not all the results we show here are particle-hole symmetric,
we compute the total Hartree-Fock electron occupation self-
consistently using Eq. (24) and introduce a magnetization as
〈n f ↑〉 = 0.3 〈n f 〉, 〈n f ↓〉 = 0.7 〈n f 〉.

The non-Hermitian matrix hσ can be diagonalized straight-
forwardly as

εσ = V −1
σ hσV σ , (25)

where V σ (V −1
σ ) are the right (left) eigenvectors of hσ , and

εσ its eigenvalues. In this basis the Hartree-Fock Lindbladian
reads

iL0el =
∑

σ

ξ̄σεσ ξσ + η. (26)

The new operators are defined as ξ̄σ = c†
σV σ and ξσ =

V −1
σ cσ , which obey fermionic anticommutation relations.

However, the creation and annihilation operators are not Her-
mitian conjugates of each other, i.e., (ξ )† �= ξ̄ .

The steady state of the noninteracting Lindbladian L0el can
be found by identifying which operators annihilate it. In other
words, we must have

ξiσ |ρ∞0el〉 = 0 for Im(εiσ ) < 0,

ξ̄iσ |ρ∞0el〉 = 0 for Im(εiσ ) > 0,
(27)

because anything else would imply a divergent state, as be-
comes apparent when considering

eL0tξiσ |ρ∞0el〉 = eL0tξiσ e−L0t |ρ∞0el〉 = eiεiσ tξiσ |ρ∞0el〉 .

(28)
For computational reasons we furthermore perform a particle-
hole transformation

P = D̄ξ + ξ̄D,

P̄ = Dξ + ξ̄D̄,
(29)

with components

Di j = δi j�[Im(εi )],

D̄i j = 1 − Di j .
(30)

From this we get |ρ0el〉 = |0〉.
Starting from the Hartree-Fock steady state as a reference

state, we can create a subspace of excited states by applying
operator pairs,

ξ̄iσ ξ jσ |ρ∞0el〉 , (31)

which is equivalent to

P̄iσ P̄jσ |0〉 , (32)
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reference state states obtained from a single excitation

FIG. 3. Illustration of Eq. (31) for a small Hilbert space. The
reference state, in our case the steady state of Eq. (24), is shown
on the left-hand site. On its right-hand site all the states one obtains
from a single excitation are depicted.

with i and j taking all values resulting in nonvanishing states,
which obeys the conservation rules, namely, Nσ − Ñσ = cσ ,
where cσ is a spin-dependent constant. For the steady state
we have c↓ = c↑ = 0 and for the Green’s functions c↓/↑ = 0
and c↑/↓ = ±1. The state in Eq. (31) corresponds to a single
“particle-hole” excitation and can be graphically interpreted
as depicted in Fig. 3 (shown in the ξ basis). By applying more
such pairs in sequence, one obtains higher excitations. In this
paper we always use a basis created by up to three particle-
hole excitations (referred to in the literature as CISDT).

Eventually Eq. (18) is transformed into the P basis such
that the fermionic contributions to the matrix elements in the
many-body Lindblad matrix can be calculated in this sub-
space.

2. Phonons

When including phonons, the Hilbert space becomes in
principle infinite so that one has to introduce a cutoff in the
maximum phonon number. The larger the cutoff, the better
the approximation for observables, but at the cost of higher
memory usage and longer computation times. By choosing
an advantageous single-particle basis, the number of bosonic
particles can be kept low while still obtaining accurate results.

One starts by introducing an offset to the bosonic operators,
which corresponds to the NECI* shift introduced in Ref. [54],
whose treatment we roughly follow below. This shifts the
number of phonons in the new vacuum to the amount corre-
sponding to the mean-field electron occupation, i.e., without
taking into account the effect of electronic fluctuations:

b → b − g 〈n f 〉
ωb

, b† → b† − g 〈n f 〉
ωb

,

b̃ → b̃ − g 〈n f 〉
ωb

, b̃† → b̃† − g 〈n f 〉
ωb

.

(33)

The corresponding Lindblad term in the superfermion repre-
sentation then reads

iLeph =
∑

σ

2g2 〈n f 〉
ωb

(c̃†
f σ c̃ f σ − c†

f σ c f σ ) + ωb(b†b − b̃†b̃)

+ g(b + b†)(c†
f σ c f σ − 〈n f 〉)

+ g(b̃ + b̃†)(〈n f 〉 − c̃†
f σ c̃ f σ ). (34)

In the next step one “rotates” the phononic basis, i.e., one
introduces a linear transformation between the “tilde” and
“non-tilde” phononic creation and annihilation operator, as
first introduced in Ref. [54]. This transformation is obtained

by the exact solution of an auxiliary Lindblad equation acting
on the isolated phonon level:

ˆ̂L0phρ = α+
(
b†ρb − 1

2 {ρ, bb†}) + α−
(
bρb† − 1

2 {ρ, b†b})
+ i[bb†ωb, ρ]. (35)

This equation can be obtained exactly by eliminating the
“fermionic reservoir” from the isolated phonon level within
the weak-coupling (g/ωb � 1) regime with the Born-Markov-
Secular approximation [56,57]. In this case the ratio α−

α+
can be

written in terms a suitable fermionic density-density correla-
tion function, and in the equilibrium case can be inferred from
the relation

Tr{b†bρ∞0ph} = α+
α− − α+

→ exp(βωb) = α−
α+

. (36)

With this we rewrite the impurity Lindbladian Limp as

Limp = Lint + Lonsite + LHF

LHF = L0el + L0ph

iLint = Un↑n↓ + iLeph − iLHF

iLonsite = εimp +
∑

σ

2g2 〈n f 〉
ωb

(c̃†
f σ c̃ f σ − c†

f σ c f σ ),

(37)

with L0ph being the superfermion version of ˆ̂L0ph given as

L0ph = α+

(
b†b̃ − 1

2
b̃b̃† − 1

2
b†b

)

+ α−

(
b̃b − 1

2
b̃b̃† − 1

2
b†b

)
− iωb(b†b − b̃b̃†)

+ α− − α+
2

− iωb. (38)

L0el contains the mean-field on-site energies felt by the
electrons due to the e-e and e-ph coupling, and L0ph considers
the thermalization effect the electrons have on the phonons.
Lint then contains corrections beyond the mean-field level felt
by the electrons, as well as corrections to the thermalization
effect the electrons have on the phonons.

In the case of the electrons, we used the matrices diagonal-
izing L0el to transform the electronic single-particle operators.
For the phonons we proceed in a similar way, where we start
by rewriting L0ph:

L0ph = b†h0phb + η0ph

= b†SUS︸ ︷︷ ︸
ϕ

SU−1Sh0phU︸ ︷︷ ︸
ε

U−1b︸ ︷︷ ︸
ϕ

+η0ph, (39)

where

b = (b† b̃),

η0ph = α− − α+
2

− iωb,

h0ph =
(− 1

2 (α+ + α−) − iωb α+
α− − 1

2 (α+ + α−) + iωb

)
,

S = [b, b†] =
(

1 0
0 −1

)
, (40)
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and U are the right eigenvectors of Sh0ph. For convenience we
define

ψ1 := φ1, ψ̄1 := φ̄1, ψ2 := φ̄2, ψ̄2 := φ2 (41)

such that

[ψ, ψ̄] = 1. (42)

In the ψ basis the Lindbladian L0ph is diagonal; therefore
the steady state is given by a single Fock state, which is
simultaneously the vacuum in this basis (|ρ∞0ph〉 = |00〉) [58].
This state contains the thermalizing effect the electrons have
on the phonons, making it a good choice for a reference state

[59] to build the phononic basis from:

(ψ̄1)n(ψ̄2)m |0〉 . (43)

We define the cutoff value for the number of included phonons
per site as “Nph,max” (number of phonons), i.e., 0 � n, m �
Nph,max, with n, m integers. To transform Eq. (34) in the ψ

basis we use

b =
(

ψ1 + α+
α−

ψ̄2

ψ1 + ψ̄2

)

b† = (
ψ̄1 + ψ2

α+
α−

ψ̄1 + ψ2
) α−
α− − α+

,

(44)

which follows from Eqs. (39) and (41). With this Leph in its
final version reads

iLeph =
∑

σ

2
g2 〈n f 〉

ωb
(c†

f σ c f σ − c̃†
f σ c̃ f σ ) + g(c†

f σ c f σ − 〈n f 〉)

(
α−

α− − α+

(
�̄1 + �2

) + �1 + α+
α−

�̄2

)

+ g(〈n f 〉 − c̃†
f σ c̃ f σ )

(
�1 + �̄2 + 1

α− − α+

(
α+�̄1 + α−�2

)) + ωb(�2�2 − �1�1). (45)

III. RESULTS

A. Method parameters

In equilibrium the parameters α+ and α− can be calculated
straightforwardly from the temperature of the system. Only
the ratio α−

α+
appears in equations; thus there is actually a single

FIG. 4. (a) Zero-bias conductance as function of temperature
and (b) self-energy Im(�R) obtained with different transforma-
tions as explained in the text. The parameters are U/E0 = 6,
g/E0 = 1.3, ωb/E0 = 1.3, εimp = −U/2 + 2g2/ωb, −Im[	R

phys(ω =
0)]/E0 = 1.0, and Nph,max = 5.

free parameter that is fixed by β. Out of equilibrium we need
to choose an effective temperature felt by the phonons, which
is, however, not defined unambiguously. Two approaches
were considered: (a) fitting the Fermi function ρFD(ω − μ, T )
to the nonequilibrium distribution ρnon-eq(ω), and (b) en-
forcing ρFD(w = ωb) = ρnon-eq(w = ωb). In both cases the
effective temperature felt by the phonons is extracted. Com-
paring the results obtained from both procedures showed that
fitting works better. Here we calculate the nonequilibrium
distribution ρnon-eq(ω) from Eq. (24), i.e., for the mean-field
case. This is computationally much less costly than per-
forming an iterative many-body calculation to obtain this
parameter.

All parameters that are purely an input to the simulation
have been chosen such that the Kondo regime can be inves-
tigated in the presence of a Holstein phonon as a proof of
concept.

B. Comparison with the NRG in equilibrium

As a benchmark of the approach presented in this work,
we compare our results with the NRG in the equilibrium case,
where the latter is known to be very accurate, especially in the
low-energy regions.

First, we investigate how the transformation of the
phononic basis introduced in Sec. II E 2 affects the accuracy
of the calculation. More specifically, we compare the results
obtained without any transformation, those with only the off-
set (“offset CI”), Eq. (33), and those with both the offset and
the rotation (“rotation CI”), Eqs. (44) and (33). We plot the
zero-bias conductance as a function of temperature, which
provides insight into the effect of the transformations at low
energies over a wide temperature range. While the differen-
tial conductance mainly probes the low-energy region, we
address higher energies by evaluating Im[�R(ω)]. From the
Meir-Wingreen formula [60] one obtains the nonequilibrium
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differential conductance G as

G =
∫ ∞

−∞

dω

π
Im[GR(ω, φ)]

γL(ω)γR(ω)

γL(ω) + γR(ω)

(
dρF,L(ω,μL, T )

dφ

− dρF,R(ω,μR, T )

dφ

)
+

∫ ∞

−∞

dω

π

dIm[GR(ω, φ)]

dφ

× γL(ω)γR(ω)

γL(ω) + γR(ω)
[(ρF,L(ω,μL, T ) − ρF,R(ω,μR, T )]

(46)

for the case of proportional coupling. Here γλ(ω) =
−2|t ′2

λ |Im[gR
λ(ω)] are also referred to as the “lead self-

energies.” In the following we will always plot the ratio G/G0.
As T → 0 the spectral function at zero frequency becomes
independent of the interaction strength [61,62]. Therefore, the
dc conductance always approaches G = G0 for T → 0, where
G0 is the conductance quantum.

The numerical renormalization group (NRG) [63–65] is
well known for capturing the equilibrium properties very ac-
curately. Therefore, we use the results obtained from NRG
Ljubljana [66] as a reference for the equilibrium case. The
calculations have been performed using the discretization pa-
rameter � = 2, with twist averaging over four discretization
grids, keeping up to 10 000 spin multiplets in truncation and
using the broadening parameter α = 0.2. The final spectral
functions have been computed using the self-energy trick,
using the full-density-matrix approach [67]. We keep up to
15 phonon states in the calculation.

Both the offset CI and the rotation CI results compare
very well with NRG and perform significantly better than
the results obtained without any transformation, as can be
seen in the differential conductance results in Fig. 4(a). The
parameters are chosen so that the system is in the Kondo
regime (U > π�) with an intermediately strong e-ph cou-
pling λ ∼ 1. Considering a maximum allowed deviation of
3% with respect to the NRG, temperatures down to T/E0 =
0.05 can be reached for the chosen U/E0 = 6 with both CI
transformations. The offset CI performs marginally better.
At very low temperature, the CI results deviate from those
obtained by the NRG because the occupation function at
the Fermi energy becomes sharper, which is reflected in a
sharper Keldysh part of the hybridization function, requir-
ing more bath sites (i.e., parameters) in the auxiliary system
to reproduce the physical system accurately than there are
available.

The self-energies of the offset and rotation CI are also
almost on top of each other, see Fig. 4(b). They mostly co-
incide with the NRG self-energy, except close to the phononic
feature, which is more pronounced for the CI methods. We
have compared the self-energies at a temperature which is
close to that obtained for nonequilibrium at φ = ωb using the
procedure discussed in Sec. III A.

With increasing phonon cutoff, we expect convergence of
all observables. Figure 5 shows that the convergence behavior
of the offset CI at low energies is superior. In the self-energy
both approaches have trouble reaching full convergence close
to the phononic feature.

The drop in the conductance with increasing temperature,
which may be described via the half-width at half maximum

Rotation CI

Offset CI

FIG. 5. Zero-bias conductance as function of temperature (a) and
(c) and self-energy (b) and (d) for the CI calculation with differ-
ent values of the phonon cutoff compared with NRG. Results are
obtained with the rotation CI (a) and (b), offset CI (c) and (d).
Parameters are as in Fig. 4.

(HWHM), is defined by the Kondo scale and is also a possible
definition of the Kondo temperature (TK). This definition of TK

was first introduced in Ref. [68], where an empirical formula
is presented and used to fit the NRG zero-bias conduc-
tance [69], fulfilling G(T = TK) = G0/2. From Fig. 5 one can
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Rotation CI

Offset CI

FIG. 6. Nonequilibrium differential conductance as a function of
voltage evaluated with different values of the phonon cutoff. Results
are obtained with the rotation CI (a) and (b) or with the offset CI
(c) and (d). (a, c) Results with strong lead coupling, −Im[	R

phys(ω =
0)]/E0 = 1.0, (b, d) with weak lead coupling, −Im[	R

phys(ω =
0)]/E0 = 0.49. Remaining parameters are g/E0 = 1.1, ωb = 1.5,
U/E0 = 6, εimp = −U/2 + 2g2/ωb, T/E0 = 0.05, Nph,max = 5. The
rotation CI results do not converge for voltages close to zero and to
the phonon frequency.

obtain TK/E0 = 0.3. When comparing to the case of g = 0,
one has for the otherwise same parameters TK/E0 = 0.2. A
lower temperature in the latter case is to be expected, since
the electron-electron interaction is reduced by the phonons to

FIG. 7. Differential conductance variation with voltage for di-
verse γL/γR ratios. Emphasis on asymmetry effects: in pronounced
asymmetric scenarios, the differential conductance aligns closely
with the equilibrium approximation, but as symmetry increases,
nonequilibrium influences become evident. Key parameters: μL = 0,
μR = φ, and −Im[	R

phys(ω = 0)]/E0 = 0.64. All other parameters
are consistent with those in Fig. 6.

an effective value of U → Ueff = U − 2g2/ωb, and the lower
the U value, the higher the Kondo temperature.

C. Nonequilibrium results

Having shown that in equilibrium the offset CI performs
better than the rotation CI, especially at low energies, we
now study if this is the case also in nonequilibrium. We
consider the differential conductance as a function of applied
voltage and start by investigating the convergence behav-
ior as a function of the number of included phonons. We
considered several values of the system-environment cou-
pling (t ′

λ), which we describe in terms of −Im[	R
phys(ω =

0)] ∝ t ′2
λ for easier notation. Decreasing −Im[	R

phys(ω = 0)]
is observed to give rise to a phononic feature at the phonon
frequency.

Figure 6 shows that both transformations converge rapidly
for stronger system-environment coupling. In the case of
weaker coupling, which is when the phononic feature ap-
pears, the rotation CI fails at low voltages and does not
converge at the phonon frequency. The offset CI, on the other
hand, converges almost immediately over the full voltage
range. Therefore, especially in nonequilibrium, the rota-
tion does not prove to be advantageous. We expect that a
(possibly partial) Lang-Firsov transformation [70–72] would
bring improvements; this will be implemented in future
work.

As in Fig. 5, showing a conductance drop as the tempera-
ture increases, a similar behavior can be observed in Fig. 6 as
the voltage increases. Again the HWHM is set by the Kondo
scale. For the parameters used here the respective voltages are
�HWHM/E0 = 0.58 for the strong and �HWHM/E0 = 0.39 for
the weak lead coupling. Comparing this with �HWHM/E0 =
0.4 for the strong and �HWHM/E0 = 0.34 for the weak lead
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FIG. 8. Variation in differential conductance with voltage for
various ωb values. As the phonon frequency is increased the phononic
feature moves to the right, which is to be expected. The charge
excitation also gets shifted, since the attraction felt by the electrons
from the phonons decreases with increasing ωb. The coupling to the
environment is −Im[	R

phys(ω = 0)]/E0 = 0.49, and all other param-
eters are in line with Fig. 6.

coupling without phonons shows, as for the equilibrium case,
that the effective reduction of U by the phonons increases
the HWHM. The charge excitation can be observed to occur
roughly at �/E0 = 3.5 [73].

We also investigated the crossover from very asymmetric
lead coupling ( γL

γR
� 1) to the symmetric case, with γλ as

introduced below Eq. (46). We use the offset CI here, since
it proved to be superior to the rotation CI. For γL

γR
� 1 the

finite-bias differential conductance can be obtained using GR

from a zero-bias calculation [74]. Figure 7 shows the nonlin-
ear differential conductance for a range of γL

γR
using the offset

CI. The finite bias is applied by choosing μL = 0 and μR = φ.
For large asymmetry γL

γR
= 19 we see that the differential

conductance is very close to that obtained by the equilibrium
approximation with γL

γR
→ ∞. As we approach equal cou-

pling of the leads, the nonequilibrium effects become apparent
and the shape of the differential conductance curve changes
significantly. The vibrational features are expected at � ∼
ωb, while the Coulomb peak is expected at � ∼ U/2 = 3E0

[19,24,75].
Finally, we investigate the effect the phonon frequency

has on the phononic feature in the fermionic spectrum.
Again we use the offset CI. Figure 8 shows that the feature
moves with ωb, as one would expect, and that it is slowly
“absorbed” in the charge excitation. The charge excitation
itself is shifted to higher bias as the phonon frequency is
increased. This comes again from the effective reduction
of the Hubbard interaction by the phonons as discussed
before.

In conclusion, we showed that the method discussed in
Ref. [54] does not seem to provide any improvement of

the accuracy of the CI calculation with respect to a simple
shift in the phononic operators. This is the case especially in
nonequilibrium, but also in equilibrium where the phonons
have a well-defined temperature. Nevertheless, the equilib-
rium results presented coincide well with NRG, and the offset
CI converges well in nonequilibrium as the phononic Hilbert
space is increased.

IV. CONCLUSION

We have presented a solver for the Anderson-Holstein
problem out of equilibrium. After mapping the Hamiltonian
to an auxiliary impurity model in the form of a Lindblad
equation and passing to the superfermion representation, we
tackled the resulting problem using configuration interaction
approach. In the electron sector we use a basis extending up to
three particle-hole excitations, while in the phonon sector we
attempted to optimize the basis using a shift and rotation, as
introduced in Ref. [54]. The method was benchmarked against
the numerical renormalization group results in equilibrium
and then tested out of equilibrium. We find that in equilibrium
the shift as well as the additional rotation allow for high
accuracy using only a small phononic Hilbert space. However,
the rotation, as discussed in Ref. [54], does not bring any
advantage beyond purely shifting the operators and in some
cases even introduces instabilities. Therefore, taking into ac-
count the effects of the fluctuating fermionic density on the
phonon field does not seem to provide any advantage in the pa-
rameter region we have been considering. This becomes even
more apparent in nonequilibrium, where the rotation leads to
convergence problems in the number of phonons for some
parameter regimes. Using the shifted operators, on the other
hand, gives quickly converging results. We also use the offset
CI to show the propagation of the phononic feature, as well
as the charge excitation, due to changing phonon frequency.
Our solver is thus capable of tackling the problem in the
very demanding regime of large bias and strong interactions
using only a shift in the phononic operators. Further im-
provements would consist of implementing the Lang-Firsov
transformation. This could potentially lead to a capable solver
for interpreting experimental bias spectra [76–81], unraveling
the roles of electron-electron and electron-phonon interac-
tions, and thereby increasing our understanding of the relation
between the structure of molecules and their potentially useful
electronic properties.
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