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Since the seminal works in the ’50s, it has been known that a bath of noninteracting electrons mediates an
interaction between local moments (such as nuclear spins or magnetic impurities) coupled to distant sites of the
lattice. Recent efforts in simultaneous control of multiqubit arrays rely on defining quantum dots in environments
which likewise contain electrons capable of mediating effective interactions. It is therefore interesting to analyze
systems with more than two impurities in higher orders of perturbation theory. Here we derive and discuss the
significance of the effective spin interactions between four impurities in fourth order of the coupling between
the impurities and the substrate, mediated by conduction electrons of a two-dimensional square lattice. This
effective interaction resembles the ring exchange—a coupling of four spins appearing in perturbative treatment
of the Hubbard model. Despite it being a higher-order effect, it can dramatically influence the magnetic ordering.
We show that as an effective interaction between impurity spins, the ring exchange can also compete with the
more familiar two-spin interactions.

DOI: 10.1103/PhysRevB.110.045414

I. INTRODUCTION

The interaction between a single magnetic moment and the
Fermi sea is dominated by the rich world of Kondo physics.
Many interesting phenomena arise when the number of chan-
nels or the spin of the impurity is increased [1]. Furthermore,
in the case of multiple impurities, an exchange interaction
mediated by the conduction electrons emerges [2–4]. This
RKKY interaction (named after Ruderman, Kittel, Kasuya,
and Yosida) is long-ranged, decaying as a power law with
increasing distance between the impurities, and can be un-
derstood as Friedel oscillations of spin-polarized electrons.
Because the RKKY interaction is oscillatory, the resulting
magnetic ordering is heavily influenced by the concentration
of the impurities. Depending on the coupling strength between
the impurity spins and the itinerant electrons, either individ-
ual Kondo singlets form (for high values of the coupling)
or the RKKY interaction wins and determines the magnetic
order of the resulting Kondo lattice [5,6]. The competition
between the Kondo and RKKY interactions can become even
more subtle if the spins are coupled to helical liquids [7,8]
or to nanoscopic lattices, where the spectrum of itinerant
electrons becomes discrete [9,10]. There are systems where
the lowest-order RKKY interaction can completely vanish
at low temperatures [11]. Continuing with the theme of in-
creasing levels of complexity to find interesting phenomena,
considering higher order of the perturbative expansion in the
coupling strength seems an exciting avenue [12], especially
if lower order terms could be suppressed at the same time. A
unitary transformation up to fourth order in electron hopping
for the Hubbard model at half filling yields a spin Hamilto-
nian which includes a four-spin interaction dubbed the ring
exchange [13,14]. This interaction plays an important role in
magnetism of a plethora of systems [15–18] and has been

studied in various lattices [19,20]. In the context of high-Tc

superconductors, ring exchange (sometimes called cyclic ex-
change) has to be included to correctly simulate the spin wave
spectra of the parent compounds [21–23]. After this fact had
been established, a large number of works turned to the study
of spin ladders, where a relatively small value of the ring
exchange coupling leads to spin gap closing and a quantum
phase transition [24–28]. Those efforts led to finding rich
phase diagrams for both triangular [29] and square ladders
[30]. The inclusion of the higher order spin interactions can
lead to exotic phases [31,32], and recent experimental results
show that the ring exchange can be the dominant interaction
in an ultracold atom lattice simulating the minimal toric code
[33], and that it can be engineered to entangle quartets of
trapped ions [34]. This prompts the question whether such a
four-spin interaction between magnetic impurities can be (in
analogy to the RKKY interaction) mediated by the itinerant
electrons of the substrate. This is indeed the case. In this
paper, we discuss the relative significance of the different
contributions to the effective impurity-impurity interaction.

Another class of related problems concerns the precision
control of manmade systems such as arrays of singlet-triplet
qubits, where accurate control of the adiabatic loading may
be challenging [35]. We speculate that the four-spin interac-
tions mediated by the environment in those types of situations
might contribute to the challenges and affect the dynamics of
qubit arrays, and we argue that in realistic parameter regimes
it might be impossible to remove the effective higher order
interactions.

The paper is organized as follows: In Sec. II, we derive
the effective ring exchange interaction. The thermodynamic
potential perturbation theory is introduced, followed by the
presentation of the fourth-order expansion and discussion
of the parameter values. Then, in Sec. III, we show the
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dependence of the higher order interactions on the inter-
impurity distance and the chemical potential of the substrate.
Appendix reveals how some of the terms stemming from the
fourth-order expansion can be reduced to two-spin interac-
tions for spin-1/2 impurities.

II. DERIVATION OF THE EFFECTIVE INTERACTION

A. Thermodynamic potential perturbation theory

We start our analysis with the usual perturbation theory
setup. The full system Hamiltonian H = H0 + Hint consists
of noninteracting electrons

H0 = −t
∑
〈i j〉σ

c†
iσ c jσ − μ

∑
iσ

c†
iσ ciσ , (1)

where 〈i j〉 refers to all nearest-neighbor pairs. The interaction
term consists of four magnetic impurities Si Kondo coupled to
the electrons of the substrate

Hint = −J (S1 · s1 + S2 · s2 + S3 · s3 + S4 · s4), (2)

with the itinerant electrons expressed in the second quantized
form si = 1

2 c†
iα �σαβciβ . For purposes of deriving the effective

impurity coupling mediated by itinerant electrons, we con-
strain the impurity spin orientations and treat the vectors Si

as fixed quantities (i.e., the spins are not part of the Hilbert
space in the calculation that follows). The idea here is that
in the limit of small J , the dynamics of impurity spins is
slower than the dynamics of itinerant electrons, thus one can
approximately decouple the two subsystems. We then employ
the perturbative expansion for the thermodynamic potential
of itinerant electrons � [36]. The correction induced by the
presence of impurities is expressed as

�� = −T ln 〈S〉,

S = exp

(
−

∫ β

0
Hint(τ )dτ

)
, (3)

where we denote the inverse temperature β = 1/T and Hint

depends on the imaginary time τ = it through the field

operators written in the interaction picture,

ciα (τ ) = eH0τ ciαe−H0τ ,

c†
iα (τ ) = eH0τ c†

iαe−H0τ , (4)

where we keep the dagger symbol even though c†
iα (τ ) is not

the Hermitian conjugate of ciα (τ ). This approach is partic-
ularly convenient because one can show that �� can be
expressed as a series

�� = −T (〈S〉con − 1) = −T [�1 + �2 + . . .], (5)

where the correction at order n,

�n = (−1)n

n!

∫
dτ1 . . . dτn〈Tτ (Hint(τ1) . . . Hint(τn))〉con, (6)

is evaluated by only considering the connected diagrams
when applying Wick’s theorem to the expectation values
〈Tτ (Hint(τ1) . . . Hint(τn))〉. Tτ is the time-ordering operator.
Such reasoning was previously applied to the detailed study of
the RKKY interaction between impurity moments in graphene
[37,38]. Another advantage of this approach is that the calcu-
lation results in the effective interaction expressed in terms of
products of Matsubara Green’s functions, which by analytic
continuation can be related to the retarded Green’s functions
of electrons in the underlying lattice. In other words, the goal
of this approach is to integrate out the lattice electrons to
obtain an effective spin-only Hamiltonian for the impurities.
Since we assume that there are no external fields, all �n with
n odd vanish due to time-reversal symmetry. In second order,
we recover the RKKY interaction between all six pairs of
impurities and a constant energy shift.

B. Fourth-order expansion

The fourth-order �4 is computed using a computer algebra
system to manage the complex expressions [39]. The general
form of those is

1

16
J4

∑
αβγ δ
εζηθ

S1 · σαβ S2 · σγ δ S3 · σεζ S4 · σηθ

∫
dτ1dτ2dτ3dτ4〈c†

1α (τ1)c1β (τ1)c†
2γ (τ2)c2δ (τ2)c†

3ε(τ3)c3ζ (τ3)c†
4η(τ4)c4θ (τ4)〉.

(7)

There are six topologically equivalent connected diagrams [40]. In the absence of spin-orbit coupling, only terms which
conserve spin need to be retained. We define the Matsubara Green’s functions in imaginary time,

−Gi j (τ2 − τ1) = 〈Tτ ci(τ1)c†
j (τ2)〉, (8)

omitting the spin labels in the electron creation and annihilation operators because the ground state is unpolarized, leading to
〈ci↑(τ1)c†

j↑(τ2)〉 = 〈ci↓(τ1)c†
j↓(τ2)〉. To complete the analysis, we expand the Matsubara Green’s functions in a Fourier series

Gi j (τ ) = 1

β

∑
n

e−iωnτ Gi j (iωn), (9)

with discrete Matsubara frequencies ωn = (2n + 1)π/β to transform the convolution of four Gi j (τ ) functions into a product.
Recognizing the Fourier representation of the δ functions 1

β

∫
dτ exp(−iτ (ωn − ωm)) = δn,m and taking into account the real-

space symmetry of the Green’s functions Gi j (iωn) = Gji(iωn), we arrive at the final expression, which consists of six general
types of contributions to the effective interaction between the impurity spins.
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After the electrons are integrated out to find the expression for �� for fixed directions of vectors Si, these are promoted
to quantum mechanical operators and the expression is reinterpreted as an effective spin Hamiltonian for the impurities.
The approximation is controlled by the timescales of the resulting effective spin-spin couplings (both RKKY and higher
order).

Before stating the final result, we discuss some of those contributions, as further simplifications arise by assuming that the
impurity spins are spin-1/2 objects with no internal orbital structure. The first rather obvious simplification is the constant energy
shift coming from expansion terms of types (Sx,y,z

i )2(Sx,y,z
j )2 = 1/16 and (Sx,y,z

i )4 = 1/16. Another unsurprising result is the
emergence of RKKY-like two-impurity interaction in the fourth order in J . The third simplifications are the effective biquadratic
interactions (Si · S j )2, which reduce to two-spin interactions and further contributions to the constant shift via (Si · S j )2 =
3

16 − 1
2 Si · S j (see Appendix). The last types of terms to be discussed at the present stage are the three-spin interactions. There

appear 12 terms with the structure (Si · S j )(Si · Sk ) that can again be reduced to two-spin interactions S j · Sk (see Appendix).
With those remarks in place, we can now state the full expression for �4:

�4 = E (4) +
∑
i �= j

χi jSi · S j + χring, (10)

with the constant shift

E (4) = 9

32
J4

∑
n

⎛
⎝G4

00(iωn) +
∑
i �= j

[
G2

00(iωn)G2
i j (iωn) − 2

3
G4

i j (iωn)

]⎞
⎠, (11)

the fourth-order correction to the two-spin susceptibility

χi j = 1

16
J4

∑
n

(
3G2

00(iωn)G2
i j (iωn) − G4

i j (iωn) +
∑

k �={i, j}

[
− 1

2
G2

ik (iωn)G2
jk (iωn) + 3G00(iωn)Gi j (iωn)Gik (iωn)Gjk (iωn)

])
,

(12)
and the ring exchange term which consists of three contributions,

χring = χ1 + χ2 + χ3, (13)

where

χ1 = 1

4
J4

∑
n
G12(iωn)G23(iωn)G34(iωn)G41(iωn)[(S1 · S2)(S3 · S4) + (S1 · S4)(S2 · S3) − (S1 · S3)(S2 · S4)],

χ2 = 1

4
J4

∑
n
G12(iωn)G24(iωn)G43(iωn)G31(iωn)[(S1 · S2)(S3 · S4) − (S1 · S4)(S2 · S3) + (S1 · S3)(S2 · S4)],

χ3 = 1

4
J4

∑
n
G14(iωn)G42(iωn)G23(iωn)G31(iωn)[−(S1 · S2)(S3 · S4) + (S1 · S4)(S2 · S3) + (S1 · S3)(S2 · S4)]. (14)

The ring exchange displays a richer structure compared to
the form familiar from the Hubbard model expansion because
there are no restrictions as to the placement of the impurities
and because the interaction between them is mediated by the
itinerant electrons which do not participate in the formation
of local moments (in contrast to the direct nearest-neighbor
hopping in the Hubbard model between lattice sites which
themselves host the local moments). The three terms differ in
the structure of the products of Matsubara Green’s functions
reflecting the corresponding connected Feynman diagrams.

Having obtained the form of the effective ring exchange
of four spins, we can start exploring its significance and
evolution with respect to the distance between the impuri-
ties or the chemical potential of the underlying lattice. We
can employ the known expressions for the lattice Green’s
function for different Bravais lattices [41,42] by performing
the analytic continuation GR

i j (ω) = limiωn→ω+i0+ Gi j (iωn). We
consider the case of square lattice. The definition based on
a recurrence relation introduced by Morita was found to be
particularly useful in this case [43].

C. Discussion of parameter values

Clearly, if J is tiny, the fourth-order corrections will be
negligible. We are mostly interested in the case where J is
small to moderate, so the perturbation theory makes sense if
truncated to fourth order. We will be particularly interested
in the possible occurrences of the situation where the details
of the system (spatial arrangement of the impurities or the
band filling) lead to the fourth-order interactions becoming
dominant, while sixth-order corrections are small enough to
be of no concern.

To pick a sensible value for numerical evaluation, we
consider impurities that emerge from the Anderson impurity
model [44] that are well in the magnetic part of the phase
diagram. The Schrieffer-Wolff transformation shows that An-
derson and Kondo models are related at half filling by JSW =
−8|V |2/U , where V is the matrix element of the overlap
between the localized states of the impurity and itinerant elec-
trons and U is the Coulomb repulsion of the impurity electrons
[45]. The minimum value of U for which the impurity behaves
like a localized magnetic moment is U = π2ρ|V |2. Assuming
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FIG. 1. Lattice and geometries of the impurity placement. Black
dots represent the underlying square lattice, while the blue dots are
the sites with the attached impurities. The lattice constant a and the
shortest distance between impurities r are shown. We refer to these
two arrangements as square and chain, respectively.

a structureless density of states, choosing hopping in Eq. (1)
to be t = 0.5 gives the bandwidth of the square lattice 2D =
4. Inserting the Anderson limit into the effective coupling
formula gives the highest value of the physically acceptable
coupling: J = 32/π2 ≈ 3.25. Based on these considerations,
in the following, we use J = D/4 = 0.5, which is physically
realistic and represents the generic intermediate-coupling
situation.

If the underlying lattice would realize the so-called Kondo
box, i.e., a situation where the itinerant electrons’ spectrum is
discrete, large values of J would put the system in a regime
where it is actually the Kondo interaction that wins, and the
impurities are uncorrelated [9,10]. Even more dramatically, an
inverse effect, where the Kondo singlets mediate the interac-
tion between local moments formed by conduction electrons
may arise [46].

Since we do not aim to study the temperature dependence
of the problem, we focus on low temperatures and set β =
104.

III. RING EXCHANGE FOR DIFFERENT
IMPURITY CONFIGURATIONS

We now discuss the variation of the effective ring exchange
with the distance between the impurities. We first consider
the case of half filling with one conduction band electron
per site. Owing to the particle-hole symmetry that holds at
half filling on the bipartite square lattice, the second-order
RKKY interaction is (anti)ferromagnetic if the impurities are
coupled to sites belonging to the same (opposite) sublattice
[37,38]. All three contributions to the ring exchange are also
oscillatory as a function of increasing distance between the
impurities in the square arrangement (as in the left panel in
Fig. 1).

To compare the strength of the ring exchange to the two-
spin RKKY, we plot in Fig. 2 the sum of all three contributions
to ring exchange alongside the sum of both second-order
χRKKY

12 = 1
2 J2 ∑

n G2
12(iωn) and fourth-order [Eq. (12)] parts

of the two-spin interaction between impurities 1 and 2. On the
square lattice, G12 = G23 = G34 = G14 and G13 = G24. For
the square arrangement, this leads to two of the three ring
exchange contributions being equal, χ2 = χ3.

FIG. 2. Sum of the effective ring exchange contributions χring

and sum of second- and fourth-order contributions to the two-spin
interactions χ12 with increasing r in the square arrangement for
μ = 0. The dashed lines represent the power-law fit passing through
the (even-) odd-r/a data points for (χring) χ12.

Both curves in Fig. 2 are oscillatory, but the two-spin inter-
action is strictly positive (antiferromagnetic) for r > 2. This
tendency for antiferromagnetism can be explained by the fact
that the fourth-order contribution to the two-spin interactions
contains terms such as G13(iωn) in the expression for χ12 and
impurities 1 and 3 reside on the same sublattice, regardless
of r being even or odd. As we remarked earlier, particle-hole
symmetry leads to antiferromagnetic ordering when the im-
purities couple to the same sublattice. The ring exchange is
particularly large for even distances when all four impurities
are coupled to the same sublattice. We fit the envelopes of
the ring exchange and two-spin interactions and find that they
decay as a power law, with effective exponents −2.06 and
−2.83, respectively. We remark that for this choice of J , the
effective four-spin interactions are comparable to two-spin
coupling and are therefore relevant, in particular, for the case
of two-spin interactions between impurities which reside on
the side of the square.

As mentioned before, regardless of the value of r, the pairs
of impurities 1-3 and 2-4 couple to the same sublattice, thus
their RKKY interaction is ferromagnetic. The fourth-order
contribution to the interaction in those pairs contains Green’s
functions for other pairs, but in this case it is always antifer-
romagnetic. Because the fourth-order correction is obviously
smaller than the second-order RKKY term, the net effect is a
ferromagnetic interaction, slightly reduced in strength.

Having observed that when all four impurities are placed
on the same sublattice, the structure of the Green’s functions
leads to particularly large values of the ring exchange, and we
now focus on such configurations. Impurities forming a chain
(Fig. 1) is an example of an arrangement which maximizes
the relative strength of the ring exchange. We again compare
the total ring exchange with the total two-spin interaction
as a function of r in Fig. 3. For this configuration, the ring
exchange does not oscillate and decays in a similar way as
χ12. In fact, we find that both interactions decay as r−1.
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FIG. 3. Sum of the effective ring exchange contributions χring

and sum of second- and fourth-order contributions to the two-spin
interactions χ12 with increasing r in the chain arrangement for μ = 0.
The points are numerical results and the lines are a power-law fit.

Order and frustration

Now we turn to the dependence on the band filling. The
variation of the ring exchange and two-spin interactions with
the chemical potential is presented in Fig. 4. Both are max-
imal in amplitude at half filling, μ = 0. Furthermore, the
strength of the ring exchange at that point is relatively the
highest compared to the two-spin interactions. The presence
of four impurities and the changing sign of the interactions
with doping mean that one can look for situations where the
alignment of impurity spins due to the effective interaction
can be frustrated or stabilized.

Let us consider the square arrangement as an example. If
the two-point interaction between the impurities 1 and 2 (and
other pairs which reside on the sides of the square) is ferro-
magnetic (χ12 = χ14 < 0), and simultaneously, the interaction
between impurities 1 and 3 (on the diagonal) is antiferro-
magnetic, there is a degree of frustration, as spins 1 and 3
favor antialignment, while both favor alignment with spin
2. This situation would correspond to χ12 + χ14 + χ13 = 0
being satisfied. If, however, χ12 = χ14 > 0, meaning that the
impurities tend to antialign with their neighbors on the side of
the square, while χ13 < 0 leading to ferromagnetic interaction
between impurities 1 and 3, the square would tend to order in
a Néel state.

Two further possibilities arise when χ12 + χ14 − χ13 = 0,
that is, when the diagonal contribution in the square has the
same sign as the contributions on the sides. If now χ12 is
(anti)ferromagnetic, the system is (frustrated) ferromagneti-
cally ordered.

For the intermediate value of J which we consider, we did
not find any value of chemical potential which would lead to
the stable (Néel of ferromagnetic order) situation described
above. We did, however, manage to find the two types of
frustration in the square arrangement, i.e., μ = ±1.03 when
χ12 < 0 and χ13 > 0, as well as μ = ±0.635 when χ12 > 0
and χ13 > 0.

FIG. 4. Sum of the effective ring exchange contributions χring

and sum of second- and fourth-order contributions to the two-spin
interactions χ12 with respect to the chemical potential μ for square
arrangement with r = a (top) and chain with r = a

√
2 (bottom).

The dependence of the ring-exchange terms χ1 and χ2 =
χ3 on r is presented in Fig. 5 for the two values of μ just iden-
tified. For μ = −1.03, different ring exchange contributions
behave in a different way. While χ1 is always negative, χ2 and
χ3 oscillate, with a much larger period than in the particle-hole
symmetric point. The inspection of the y axis reveals that the
contribution of the four-spin interactions is much smaller with
finite doping. The same holds for μ = −0.635; in this case, all
ring exchange terms oscillate with some short-distance period.
In both cases, the ring exchange quickly decays to very small
values.

Another important point is that while we present here the r
dependence of the four-spin interactions, it is only at r = 1
where the conditions χ12 + χ14 ± χ13 = 0 are met for the
specific chemical potentials used. There is no realistic way
of modulating the chemical potential in real space so as to
fulfill those conditions regardless of the distance between the
impurities. In general, both stability and frustration require
fine-tuning in such a complicated system with many types of
competing interactions, which strongly depend on the value of
the chemical potential. We have examined different arrange-
ments, for example, a square arrangement rotated by 45◦ with
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FIG. 5. Ring exchange with respect to the size of the square
arrangement r for two different chemical potential values, corre-
sponding to the frustration points described in the main text.

respect to the lattice vectors or chains aligned with the lattice
vectors. All those other types of arrangements did not produce
dramatically different results, apart from the ring exchange
being relatively weaker when compared to the two-spin
interactions.

IV. CONCLUSIONS

We have shown that four Kondo impurities in a host
material are indirectly coupled through an effective four-
spin interaction mediated by the itinerant electrons of the
underlying lattice. By deriving the full fourth-order pertur-
bative correction to the thermodynamic potential, we have
determined that this substrate-mediated ring exchange can be

comparable in magnitude to the two-spin interactions, and that
for realistic intermediate coupling strength parameters it is
difficult to tune it away. Different arrangements of impuri-
ties attached to the sites of a square lattice lead to different
real-space characteristics of the effective interaction, strongly
depending on the chemical potential and the impurity loca-
tions (in particular with respect to sublattices). Despite the
relative strength of the ring exchange significantly decreas-
ing with doping away from half filling, we have found the
possibility to tune the system to frustration or stability points,
which could perhaps be implemented in artificial lattices.

A possible extension of the present paper would be to con-
sider other lattices, as for short inter-impurity distances it is
possible to calculate the appropriate Green’s functions numer-
ically. The triangular lattice presents itself as an immediate
candidate for an extension. Additionally, one can expect that
when the time-reversal symmetry is broken, effective chiral
spin interactions of the type Si · (S j × Sk ) can be mediated by
the lattice.
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APPENDIX: IMPURITY SPIN EXPRESSIONS

Here we present the logic behind the reduction of some
terms appearing in the fourth order of perturbation theory,
which is applicable when the impurities are spin-1/2 particles.
In that case, one can express the spin operators via the Pauli
matrices 2Sx,y,z = σ x,y,z and use the familiar identity σ aσ b =
δab + iεabc to write

(SiS j )
2 = Sa

i Sa
j S

b
i Sb

j =
(

1

4
δab + i

2
εabcSc

i

)(
1

4
δab + i

2
εabcSc

j

)

= 3

16
− 1

2
SiS j . (A1)

The product comprising three spins can be treated in a similar
way:

(SiS j )(SiSk ) = Sa
i Sa

j S
b
i Sb

k = Sa
j S

b
k

(
1

4
δab + i

2
εabcSc

i

)

= 1

4
S jSk + i

2
εabcSa

i Sb
k Sc

i . (A2)

Because the same number of terms in opposite order appear,
i.e., (SiSk )(SiS j ), the imaginary terms cancel.
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