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Microscopic mechanisms of dephasing due to electron-electron interactions
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We develop a nonperturbative numerical method to study tunneling of a single electron through an
Aharonov-Bohm ring where several strongly interacting electrons are bound. Inelastic processes and spin-flip
scattering are taken into account. The method is applied to study microscopic mechanisms of dephasing in a
nontrivial model. We show that the electron-electron interactions described by the Hubbard Hamiltonian lead
to strong dephasing: the transmission probability at fex 7 is high even at small interaction strength. In
addition to inelastic scattering, we identify two energy-conserving mechanisms of dephasing: symmetry-
changing and spin-flip scattering. The many-electron state on the ring determines which of these mechanisms
will be at play: transmitted current can occur either in elastic or inelastic channels, with or without changing
the spin of the scattering electron.
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[. INTRODUCTION magnetic flux, however, no spin-flip-induced dephasing has
been investigated by these methods. A study of a Coulomb
Advances in the semiconductor technology made it posblockade regime was recently done by Xiong and Xidng
sible to study quantum interference effects in mesoscopiwith a method similar to the one proposed in the present
systems where the wave nature of electrons plays an essemerk. Their Hamiltonian, however, maps on a noninteracting
tial role. Particularly noteworthy are the studies of themodel in the limit when the coupling to the leads is zero.
Aharonov-Bohm(AB) oscillations in mesoscopic rings®  Furthermore, they have only investigated spinless fermions
The analysis of results in terms of the single-electron pictureénd neglected inelastic scattering channels. Transmission of
turned out to be inadequate to describe the totality of phetwo interacting electrons was recently studied on the basis of
nomena. Inelastic scattering of electrons is believed to be theontinuous two-particle Hamiltonian, where an enhancement
predominant mechanism responsible for the loss of the phas# transmission with increasing interaction strength was
coherence in such experiments and the suppression of ttieund?®
h/e oscillations. When an electron interacts with optical To shed some further light on the problem of dephasing in
phonons, the dephasing only occurs through inelastielectron-tunneling experiments, there is obviously a demand
processe$ At low temperatures the phonon degrees of freefor a capable method that would treat the problem of the
dom freeze out, therefore other mechanisms for dephasingcattering of an electron through a finite region where
should be taken into account. Measurements of the dephastectron-electrorn(e-e) interactions would be exactly taken
ing time saturation at low temperatufdsshow that zero- into account. Such a method should be based on the use of
point fluctuations of the electromagnetic environnfemtuld  exact correlated many-electron wave functions.
play a role in explaining this anomalous behavior. It is nev- In this paper we propose a method that treats dke
ertheless believed that at low temperatures the electronnteractions by direct diagonalization of the many-body
electron interaction is the dominant mechanism forHamiltonian using iterative (Lanczo$ technique. The
dephasing:® Further support for the importance of electron method naturally takes into account spin-flip processes, so it
correlations at very low temperatures comes from recentan predict the ratio of spin-flip over normal scattering pro-
measurements of anomalous temperature dependence of thesses. This makes the technique interesting for calculating
dephasing time in mesoscopic Kondo wifesvhere non-  spin-polarized transpdrtin the field of spintronics.
Fermi-liquid behavior has been found below the Kondo We apply the method to study single-electron transmis-
temperature. sion through an AB ring witle-e interactions. As is widely
The AB geometries have been theoretically studied usindgtnown, an electron perfectly reflects from an AB ring when
self-consistent mean-field approximations that break dowthe fluxd penetrating the ring is such that the phases gained
for degenerate levels, which physically happens at very lovby the electron traveling through the lower or the upper arm
temperatures: 2 The mean-field approximation does not of the AB ring cancel ¢ = ). Such reflection occurs for
describe transitions in which the symmetry of the many-any energy of the incident electron. This remains true even
electron wave function of correlated bound electronswhen there are electrons bound on the AB ring, as long as the
changes, and it is thus inadequate to study dephasingystem remains noninteracting. The main purpose of our in-
Keldysh-type  Green’s  functions and  numerical vestigation is in the influence of the finite Coulomb repulsion
renormalization-group techniqués® or equation of motion on the transmission of the electron in the case described
method® have been applied to AB systems, where calculaabove. We choose the Hubbard model to describe the AB
tions were limited to interacting quantum dot with two levelsring. The Hubbard model is the simplest and yet the most
coupled to reservoirs. Particular attention was devoted to thenportant nontrivial prototype model for correlated electrons
appearance of the Kondo physics induced by changing thi the solid state. As we will show, finite Coulomb interac-
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Extended interaction region The operaton:j,,’r creates an electron with spin at sitej
' and we make a formal identification;, '=c;,'. The
phasesp; describe phase changes due to magnetic flux pen-
etrating the ring. We chose a gauge in which we ascribe the
@ to total phase change due to magnetic-field flud
o e e =27dy, /P, (Whered,, is the magnetic field flux and,
=h/e is the flux quantur to a single element, e.g¢,
=® and¢;=0 (j#1).
The leads are described by a tight-binding Hamiltonian

Left lead Aharonov—Bohm ring Right lead
. . Hicad™ _tleadz Ait10 Tai,,r+ H.c. (2
FIG. 1. Aharonov-Bohm ring. Magnetic flux penetrates the cen- io
ter of the ring.
— : Th.
tion in certain cases leads to finite transmission of the inci- t'eadiz:; bi1 Byt H-C. &

dent electron, despite the fact that the total wave function for
the scattering electron and electrons bound on the AB ring he operatog; ," creates an electron with spinat sitei on
preserves full quantum coherence. We will therefore refer tdhe left lead, while the operatds; ,' does the same on the
the processes that lead to finite transmission in the cagéght lead. The ring is coupled to the electrodes with cou-
where® = 7 asdephasingprocesses since they clearly lead pling constantg,,
to diminished AB oscillations observed in experiments. We
show that dephasing can occur either (ay inelastic pro-
cesses Wherepthe tu?meling electron ex(?il%les bound glectronsHC_ _to; (@, "C1p+ H'C')_tog‘ (byy"CaptH.C).
on the ring or by(b) elastic(in regard to energyprocesses, (4
where the tunneling electron changes the symmetry or the )
spin of the degenerate many-electron wave function. No ex] e coupling constarty, need not be small: the method ap-
change of energy is required in the latter c&@2dephasing pI|e_s equally well for strong coupling between the interaction
occurs because the tunneling electron leaves a trace on #§9ion and the leads.
“environment,” which consists of bound electrons.

B. Correlated many-electron states and exact diagonalization

Il. METHOD The transmittivity can be meaningfully defined in a many-

] . electron scattering problem only if one single electron leaves
The proposed method is based on the multichannel scafne scattering region. For this reason, we restrict the energy

tering technique that was developed for studying the tunnelsf the incoming electron to be below the ionization thresh-
ing of a332|21gl_e electron in the presence of scattering bys|d. Our approximation then consists of taking into account
phononsg®24 Since its introduction, it has been successfullyomy those many-electron states in which at most suat-
applied to a variety of prob{lir,‘?s where a single electron igering) electron is located outside the ring. Before the impact
coupled to phonon modés®" It was even incorporated of the electron(which, for convenience, will be chosen to
into Landauer theory where the influence of electron-phonoip,gye spin up there aren=n,+n, other electrons bound on
scattering on the nonequilibrium electron distribution hasihe AB ring. We truncate all many-body states, where addi-
been investigatetf. We now generalize this method to study tional electrons hop from the interacting region to the lead.
many-electron problems. When physical parameters of the system, eet,U), are
chosen in such a way that theselectrons are bound in the
A. Model Hamiltonian intergcting region, the_ approximgtion i_s equivalent to ne-
. _ ._glecting the exponentially decaying tails of timeelectron
While the method can be applied to more general situa

. . ) . ) A wave function in the leads.
tions and arbitrary geometries of the interaction region, We = pgeore the scattering, the bound electrons are therefore in

choose for simplicity a particular physical system which will .\ then-particle eigenstates of the Hamiltoniddy,g,

also serve as a toy model for the study of &ie interaction Eq. (1). We denote th tat 1 d thei ies b
induced dephasing. We thus consider an AB ring coupled tqu'( ). We denote these states fay) and their energies by

two ideal one-dimensional leads; see Fig. 1. The ring is des! - The superscript index denotes that the electron in the

. ) S lead has spin up.
scribed by a Hubbard-type Hamiltonian When the incoming electron enters the ring, the system is

in a superposition of then(+ 1)-particle states which we

i denote by|B;). These states are not necessarily eigenstates
Hiing= 2 (€Cj, 'cj ,—te'%ic;.y, Tcj ,+H.c) 1B y &9

o of H,jng. After the scattering there is a single electron in the
leads, while the ring is in a superposition of theparticle
4 UE G TTCj C iTCJ . (1) eigenstates ofl,,. These states are tl11&iT) states andin
~ ©i. 16 :

the case where the spin of the scattering electron is flipped
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the n-electron eigenstates with, +1 spin-up electrons and

n,—1 spin-down electrons. Tmr]lhese spin-flipped states are la- ~to > b:-,j,adli,j,a_to,z bﬁj,ale.j,aJF; h, vex=Ee,
beled by|ai) and their energies by' . Because all the pos- e he @
sible states of the ring after scattering are orthogonal to each

other, the outgoing channels are well defined and the currenthereb’s denote scalar products

is conserved.

. . . _ L _
We calculate the eigenstates) using exact diagonaliza- brj »=(Bilcis Naf),
tion of the HamitonianH ;.4 in the suitable region of the 5
many-particle Hilbert space, taking into account that the b »=(BilCa, a]), (8

Hubbard Hamiltonian is invariant with respect to rotations in . . .

the spin space. The diagonalization is therefore performed i€ Ni.k=(Bi|Hring Bi) are the matrix elements of Hamil-

the constantif,S,) space, whers, is the conserved compo- OManHing in then+1 relectron subspace.

nent of the total spin in the direction. The method can be ~ BY operating with(a7|a; , from the left we get

applied to Hamiltonians that do not conser% at the

g;ﬁ;i?ast?or?;, significantly more time consuming numerical —tleaodé,j,(r—to; (bk,j,(r)*ek—i_qudl:[,j,(r:Edij,g- (9)
At zero temperature, the electron scatters on the ground

state of then-particle state in the ringLa(T)). During the

scattering the electron can loose energy by exciting the .

bound electrons into one of the excit¢d) states. The In an open OutLgomg channe]L,(;) a plane wave can

probability of such transitions is a rapidly decreasing func-Propagate, so that;; ,=exp(k;)d;; . By energy conser-

tion of the energy loss, therefore only a small number of the/ation the wave numbek; , is obtained from

scattering channelstates| ")) has to be considered. This -

observation is essential for numerical performance of the €0~ 2lieaOS K) = €] — 2lieaLOSK; )

method: we can efficiently calculate the states from the bot,o energye, is the initial energy of the-electron bound

tom of the spectrum of the matrix representationsHofn state on the ringK is the wave number of the incoming

sgitable 0.S,) subspaces using th? _iterative Lanczos tGCh'eIectron, ance? is the final energy of the bound electrons.
nigue. We have used the implicitly restarted LanCZOSEquation(Q) cajm thus be written as

method, as implemented ARPACK package’ The eigenval-
ues and eigenvectors were computed to machine precision.

By taking into account only the allowed states, the wave —to>, (b{;’jyg)*ek
function that describes the scattering of one electron on the d- K
AB ring is given by !

D. Pruning the leads

(10

,j,U: o . . (11)
E—¢ + iead®XH(iK] )

-~ Similar equation can be obtained for exponentially decaying
|‘I’>=E E diL,j,(rai,rrTla'jU> (closed outgoing channels that we also take into accqupt
=1 1o to some cutoff energy, above which the inclusion of further
o0 closed channels does not change the resultsese are de-
+> 2 df b Tlen)+ > e, (5)  fined through the relatiods; ,=exp(~; ,)di; , and
i=1 j,0 J

ij,o

L dR

where d; ,, dfj,, and g are the coefficients to be €0~ 2tiealOSK) = €] — 2lieafOSIK;j ;). (12)

determined. Equation(9) can, in this case, be written as

C. Reduction to a sparse system of linear equations N
. . ) —to (byj.o)* e
We consider a steady-state scattering described by the k

i : di; ,= . (13)
Schralinger equation Lo e €7+ UeaXP — Kj )
H[W)=E|V), (6)  In the incoming channel we have both the incoming and

. o . : outgoing wavesern’O’T=exp(—iKm)+r exp(Km). We obtain
with H=H j,q+ Hjeagt Hc . This equation cannot be exactly d;m=eprK)diO’ﬁexp(—2iK)—1. The equation for the in-

solved in the space, Spa”r.‘ed on ) and [B;) states, coming channel thus contains an additional inhomogeneous
because applying the Hamiltonian to the wave-function an; . : . .
: . term exp(-2iK)—1, and Eq.(9) for the incoming channel is
satz takes us out of this space by generating terms where
more than one electron exits the scattering region. Omission
of these terms represents the main approximation used in our —t02 (kaT)*ek_tleac[qu_ZiK) —-1]
method. This approximation leads to an error that is not sig- k B
nificant for suitably chosen model parameté&se below E— gt tieadXP(iK)

Operating on Eq(6) from the left with{g,|, we obtain (14

L _
dig;=
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Using Eqgs.(11), (13), and(14), and similar equations for o=1
the right lead, both leads can be remoypduned from the 1 T
problem?* 0.8f- B —
Equationg7), (11) and equivalent equations for other out- 0.6 L 1 voo
going channels form a system of linear equations for un- g4 L ]
knownsdy; ., df; ., ande;. This sparse system is solved o2k @ L b _
for different energies of the incoming electron using the Su- ol— . , oy
perLU library3* osk i o e
The partial transmittivity through channej, ¢) is given "t ! osF E
by 06 - el U=02
0.4_— o C o s
Csinki o) ko 02 | | ) | |
Tjo(E)= W|dl,j,a| ' (15 05 Nl 2 s 1
E E

Since the method is based on exact solution of many-electron f|G. 2. Transmission probability as a function of the incident

problem, we can compute transmission at arbitrarily largeslectron energy for one electron with spin down bound on the ring.

values ofU. The incoming electron had spin up. The coupling to the leaq is
=0.4. In all cases transmission is purely elastic.

E. Extended interaction region

Results can be improved by extending the interaction reMain reason why we limited our calculations to .eight site
gion which is solved exactly by the Lanczos method by addM0dels, even though the Lanczos method easily handles
ing additional sites from the leads. This procedure takes int§hUch larger lattices.
account the decaying tails of bound electron wave functions
in the leads at the expense of increasing the computational
Hilbert space. The error due to the omission of the terms [ll. RESULTS—ONE BOUND ELECTRON
corresponding to a second electron jumping out of the origi-

nal interaction regiorjsee discussion following Ed6)] is We now investigate the effect of interactions on an elec-

exponentially reduced with the inclusion of each additionalifn @s it tunnels through the ring. The incoming electron has
site from the leads. spin up, and there is one bound electron with spin down

These improvements mainly lead to energy shifts of thdnside the ring. The on-site energies are —4.S¢5q, the
resonance peaks while the general characteristics of the speverlap integrals aré= \3tjeaq, and we setjeaq=1.
tra remain unchanged. In principle, the region could be ex- First we consider the noninteracting case. In the absence
tended until the desired convergence is achieved. In our cabf the magnetic field the transmission reaches unity at the
culations the interacting region consisted of the ring and oneesonance, Fig.(3). The electron is fully reflected at any
additional site from each lead; see Fig. 1. In fact, we had tancident energy when the magnetic fluxds= 7, Fig. 2b).
take into account the site on the left electrode in order tdThis is the usual Aharonov-Bohm effect.
ensure that the incident electron spreads into two partial \We now turn on the interaction. &b =0, we still see a
waves that propagate through both arms of the ring. Theity peak at the energy of the single-electron resonance,
additional site on the right electrode is required so that thgollowed by smaller satellite peaks caused by the interaction,
partial waves can interfere, which leads to the proper decripFig_ 2(c). At ® =1, when in the absence &f the electron is
tion of the Aharonov-Bohm effect. The inclusion of these |y reflected, we obtain very high transmission probability
two sites was therefore essential in our studies of the dephaaéspite relatively smalll =0.2, Fig. 2d). In the largest peak

ing mechanisms. . . ._the transmission approaches the valuel/2. Since the in-
In cases where the ground state of the interaction region .
coming electron and the bound electron are not entangled,

was degenerate, we averaged the transmittivity spectra over . L )
all the degenerate states. The variational space taken in gl total spin is not well defined, therefore the total wave
unction is a superposition of a singlet and a triplet state with

account in our calculation was equivalent to a Hubbar )
model on eight sites with no translational symmetry. equal _amplitudes: |TL_)=1/J§(|S= 15,=0)+|S=0S,
The largest problem that could be effectively solved has™ 0)). The triplet scattering has zero transmission probabil-
three bound electrons with spin up and four electrons witHty at ®=r since in the Hubbard model only singlet elec-
spin down. In this case there are8000 |a’) states and tro_ns mt_ergct. The smglet scattering, however, regches the
~5000] ;) states. We kept 200 lowest-lyirg?) states to ~ unitary I|m|t at the main resonance peak. Averaging over
define our scattering channétiiagonalization took 3 min of Poth contributions, we indeed gét=1/2.
a modest personal computeBolving the sparse system of ~ The spin-flip scattering part of the transmission probabil-
complex linear equations for a range of the incoming elecity is shown in the inset of Fig.(®). The spin-flip and nor-
tron energies took 200 min for 237 data poifts about 1 ~ mal scattering contribute equally to the total transmission
min per data point on the averggdhis step is the most probability. Both are purely elastic with respect to energy
computationally demanding part of our technique. This is thechanges.
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A. Lead decoupling at®=7r and scattering mechanisms
at nonzero U L

To gain more insight into the mechanism of nonzero elec- ——6)
tron tunneling probability, we present a simple physical pic-
ture of electron tunneling for the case &= . We first
transform the AB ring Hamiltoniar{l) from the basis of
localized states to a basiskrspace. For more generality, we
can now assume that the ring consists of an arbitrary even - R
numberm of sites, which we now number from 0 ta—1,
so that site 0 is coupled to the left electrode, while sit2 is —=—
coupled to the right electrode.

The noninteracting part of the Hamiltoni@b) is diagonal

in the plane-wave basis,
FIG. 3. At ®=1, one can rotate each pair of the degenerate
1 m B eigenstates in such a way that one of them couples only to the left
dn,o:_ E e*'lkncj'a, (16 electrode and the other to the right electrode. In the absence of
\/a i=1 interactions both electrodes are effectively decoupled.

with wave numbersk, given by the periodic boundary travel in the upper and lower arm of the ring, or as an effec-
condition  expk,m=1, or k,=2mn/m, where n e decoupling of both electrodes due to a topological phase
=0,x1,...,2m/2—1m/2. The corresponding eigenvalues ghj.
are We will now write the interacting part of the Hamiltonian
in the new basis and search for processes that are responsible
En=e—2tcogk,— ®/m). (17)  for the nonzero transmission. From Eq$6) and (18) we

] ] . can express; , as
When ® = 7, all the noninteracting eigenstates are twofold

degenerate since dés—(w/m)]=cogk;_,—(w/m)]. The 2gi(mj/im) M2 5 5
complete orthonormal set of states is therefore composed of ¢; ,=——— > [cogknj)a n st SiN(Kyj)agn,ql-
m/2 pairs of states with wave numbeks andk;_, for n V2m  n=1

ranging from 1 tam/2. For each pair we can form two linear (19)
combinations of states: where we have introduced shifted wave numbers
1 ~ _277 1
aL,n,lr:E(dn,(r—i_dl*n,(r) kn_ﬁ n_i ’ (20)
1 The particle number operator can then be expressed as
_ (elkni 4 g~ Tknlgi2miim)e
J2m 2 b ) 2 o
¢f oCj0=— ;} cogkyj)cogkgi)al ;a1 g0
1 PP
aR,n,U:E(dn,a_dlfn,a-) +sin(kyj)sin(kgi)ak p 42 q.0

+ COi’Rpj )Sm(ﬁkqj )al,paR,q,o
+sin(kpj)coskqi)ag par g0 - (D)

We now see that the Hubbard interaction term
Sici e 4 Tey | is a sum ovef of products of four trigo-
nometric functions. Each one of these products can be writ-
ten as a sum of trigonometric functions by using trigpnomet-
ric reduction formulas such as,

1 . L
— — 2 (elknj_eflknJeIZWj/m)ijou (18)
J

It is easy to see that the coefficient@y, , in the expression
for a_ . is zero, and likewise for the coefficient of, in
the expression foag , ,. This means that the eigenstate de-
noted byL is coupled only to the left electrode, while eigen-
stateR is coupled only to the right electrode; see Fig. 3. In
the noninteracting case the incoming electron can only tun-

nel from the left electrode to aln state. This state is decou- 8sir(a)sin(b)sin(c)sin(d)

pled from the right electrode, and since there is no term in =-co§a—b—c—d)+coga+b—c—d)
the Hamiltonian, which would allow transitions fromto R

state, the electron is fully reflected. tcoga—b+c—d)—cogat+b+c—d)

There are therefore two equivalent physical descriptions
of zero transmittivity of an AB ring. One can either consider
it as a destructive interference of partial electron waves that —cog§a—b+c+d)+coga+b+c+d). (22

+coga—b—c+d)—coga+b—c+d)
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FIG. 4. Transmission due to elastic symmetry-changing
scattering.

FIG. 6. Transmission due to elastic spin-flip scattering.

The terms with four sine and with four cosine functions
We note that reduction formulas for an even number of sineare of little importance for our purposes. They describe in-
and cosine functions consist of a sum of cosine functionsterlevel repulsion and interlevel transitions without changes
while the reduction formulas for an odd number of sine andof the LR character of the electron states, and therefore do
cosine functions consist of a sum of sine functions. This fachot lead to a finite transmission. We will focus instead on
is important to understand the selection rules that lead teerms with two sine and two cosine functions. They are of

dephasing. three kinds. The first one consists of terms of the form
The arguments of functions on the right-hand sides of the

reduction formulas are sums of the form aL’p’TaL,q,TaLr’laR,syl : (25
2] 1 1 1 1 These terms describe what we cgfimmetry-changing tran-
m|PT5F 475 i(r— E) *|s— 5) , sitions the tunneling electroriwith spin up in the L state

jumps to aR state, while a bound electron undergoes a tran-
i.e., of form 27jt/m, wheret is an integer. When the sum- sition fromRto L state. Such a transition can either be elastic
mation over site indexis performed, most of the terms will (with respect to the energy of the tunneling elecjrdnp
drop, since =(, r=s (Fig. 4), or inelastic(Fig. 5. The second kind of
terms is of the form

T t
. p18L,q,18Ry, 8RS, - (26)

These terms correspond ¢pin-flip transitionsthe tunneling
electron with spin up in thé,q state makes a transition to a
lower-layingL,p state, while a bound electron undergoes a
transition from theR,s to theR,r state, Fig. 6. Transition can

where the first line in Eq(23) can also be viewed as the again be either e|ast|(yv|th respect to energyfor p=q, r
momentum conservation for the case of twisted boundanss (Fig. 6), or inelastic(Fig. 7).

conditions. All interaction terms with a coefficient that after  Finally, terms of the form
trigonometric reduction involves a sine function will there-
fore vanish. Such vanishing terms come from products of an
odd number of trigonometric functions of each kind, there-
fore they are of the form such as

=0, (23

" t
aRp,18L,q,18R,r | 8Ls,| (27)

can correspond either to symmetry-changifig. 8 or to
spin-flip transitiongFig. 9), depending on the,q,r,s quan-

T t
AR p1AL,qg, 1L, AL, - (24 tum numbers.

Such terms would allowfor p=q,r=s) transitions of the
tunneling electron from statk to R without changing the
bound-electron statg.e., without leaving any imprint on the To illustrate more in detail our results presented in the
environmenk Such transitions would clearly be in contradic- preceding section, we present here numerically exact calcu-
tion with our understanding of the dephasing in the AB rings.lation of scattering of an incoming electr@described as a
wave packet with a given finite-energy widlibn the electron

B. Scattering of a wave packet

.-~ L R L R
- — — — L R L w
7T — — e e

7T
a) before b) after _ + - -
a) before b) after

FIG. 5. Transmission due to inelastic symmetry-changing

scattering. FIG. 7. Transmission due to inelastic spin-flip scattering.
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.---L R L R __ 05—
-4 — -
- - 0.4 4
- T - T 0.3 -
—+ — — 4 =
a) before b) after 0.2 -
FIG. 8. Transmission due to elastic symmetry-changing scatter-
ing (of the second kind 0.1 .
with the opposite spin, bound on the Aharonov-Bohm ring. ob— 1 .
Since we are dealing with a simple case of only two elec- 2 2
trons, this problem can be solved numerically exactly by
direct integration of the two-body Schiimger equation FIG. 10. Transmission probability as a function of the incident

i7id| )/ dt=H|¢). We take into consideration a sufficiently electron energy for one electron with spin down bound on the ring.
high number of chain sites, so that the positional spread of
the wave packet is smaller than the length of the left and th& = is O for all electron energies, while the transmittivity
right lead. We chooseN=200 sites, where the six-site Of an interacting system witb =1 is shown in Fig. 10. The
Aharonov-Bohm ring occupies positions ranging from 101location and the spread of the energies of the wave packet
to 106. are represented in the figure by a two-sided arrow.

We construct the wave function at the initial time s The electron density before and after the scattering at
= (/,%fpacke@bouné())_ The operatod>1rb0undcreates an electron = IS shown in Fig. ;1 for the noninteracting case and in
with spin down in the bound eigenstate of the Aharonov-Fig. 12 for the interacting caséForU=0, the wave packet

Bohm ring. We calculated this state using direct diagonalizais perfectly reflected, as expected. For=1, the wave
tion. The Operatow%rpacketis packet is partially transmitted through the scattering region.
In fact, the expectation value to find an electron in the sec-
. (k—Kg)? ond electrodePg, corresponds to the following average:
lﬂTpacket:CEk expg — 7

eXF( - ichenteQC}Lk ,
29 Pem | AKT e Yl puaat =07 (@9

t_ N o - -
where ¢ = 1_/\/NE]-:1eprkJ)c“ and C is a normalization \yhere the transmissidhis calculated using the method from
constant. This operator creates an ele_ctron with spin up in 8¢¢. |1 and is presented in Fig. 10. This equation connects
wave packet centered at St&ene, Which has the average ang thus validates the two distinct methods. It is furthermore
wave numbek, and a spread af in thek space. We choose \yorth stressing that the probability of finding electrons with

ko= /2 to place the wave packet in the middle of the energygither orientation of spin in the second electrode is equal; see
band of the leads with the group velocity= dE/dk(k=K)

(o

=t=1. We seto=0.13 andN 7= 50. Spin up U=0 Spin down

The equation of motion was then integrated using ¢ 08 ———7m— ——— 0.08 ——— —
Bulirsch-Stoer method, which gives highly accurate results Before Before
for this type of problem. The accuracy and stability can be I ] I 1
conveniently estimated by monitoring the deviation from the - 0.04- 42 0.041 .

proper normalization of the wave-function. Using the
Bulirsch-Stoer method, the normalization differs from 1 at

the eighth decimal place after the scattering. 0050100150200 %030 " T00 150" 200
We set the parameters to=—3.0, t=1/3, t,=0.6, and 008 ———3 08—l
tieas™ 1. For the noninteracting system the transmittivity at After After
.---L R L R/_\‘ < 0.041 —120.04 7
-4 -
- - - - 0 0 | s L | L
0 50 100 150 200 0 50 100 150 200
- - - - site site
—— - - —4— FIG. 11. Electron density before and after the scattering of

the wave packet on an Aharonov-Bohm ringdat 7: noninteract-

ing case. Note that the vertical scale is the same for both spin
FIG. 9. Transmission due to elastic spin-flip scatteriofthe projections: the scale was chosen so that the wave packet is clearly

second kingl visible.

a) before b) after
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Spin up U= Spin down 0.5
0.08— T 0.08 T
Before_ Before |
< 0.04F -2 0.04| .
"
0 P I ol— . Ll o
0 50 100 150 200 0 50 100 150 200 E
0.08 . site — 0.08 ' site —
After After
@ 0.04 = 0.04 ]
0 0 -
0 50 100 150 200 0 50 100 150 200 A-B phase [in units of 7]
site site
) ) FIG. 14. The flux dependence of integrated transmission prob-
FIG. 12. Electron density before and after the scattering of theyjjiy for different interaction strengths. The coupling to the leads
wave packet on the Aharonov-Bohm ring &= interacting g t,=0.6, all other parameters are as before.
case.
Figs. 12 and 13. This can be explained as follows: finited'bSCrete t”h“mbef (t)'f S|tesf. tg Its thelre;otre mor_tet_ r_e{\vealmg to
transmission is a direct consequence of interadtiomhich ~ 9PSETVE the variations ot thategral or transmittivity over
fhe whole energy band,T(E)dE. This quantity is relatively
Insensitive to energy shifts of the peaks, while it should
learly show AB oscillations which affect the height of all of

in the case of two electrons acts only on the singlet part o
c

the wave function. The triplet part does not féetlue to the
on-site nature of the interaction. Transmission therefore o

curs only through the singlet channel.

C_

the peaks.
In Fig. 14 we present this integral as a functiondaffor
increasing interaction strengthb

a number of
=0,0.1...,1.0. The amplitude of AB oscillations notice-

C. Aharonov-Bohm oscillations
Aharonov-Bohm effect is experimentally observed asably decreases as the interaction grows stronger. Figure 14
magnetic-flux-dependent oscillations of the electric currentilso shows that the integral transmittivity is essentially inter-
action independent around zero fldk=0. A similar insen-

through a mesoscopic ring structdrérom calculatedr (E)
=GoT(Eg), whereGy=2e?/h is the conductance quantum the case of tunneling in the presence of electron-phonon

spectra we could estimate the zero-bias conductand® as sitivity of the transmittivity sum rule has been discovered in
and E¢ is the common Fermi level of both leads. In our coupling*3>2This insensitivity breaks down at larger.

IV. MANY BOUND ELECTRONS ON THE RING

minimal model with a discrete number of resonance states in

the ring, the energy shifts of the peaks when the flux is
changed[see Eq.(17)] lead to pronounced conductance
variations not necessarily connected to the Aharonov-Bohm \yie now consider several interacting € 1) bound elec-
effect itself. This is a direct consequence of using a smalyons on the ring. All presented cases are calculated at the
flux value ® =1, unless otherwise specified. Spin of the
incoming electron is up. We have limited the energy of the
i.eE

incident electron to a half of the bandwidth,
=[—2,0], in order to avoid ionization. Our main goal in this

k ' --- ring T B
section is to investigate the circumstances under which a
scattering electron obtains a finite transmission probability at

0.8] /_ \\\“' — leftlead |
! Voo o leftlead T
fl ‘\“ [ — o rightlead |
0.6 - dhtlead 1] ® =7 when scattering through the AB ring in the presence
a i ................................. of many bound electrons. We show that in most cases Cou-
04k I8 > 4 lomb interaction leads to finite transmission. In our work we
," B —— refer to processes that cause finite transmissiaeabasing
! | processesTo avoid confusion we point out once more that
/ " the total wave function describing a many-body state of the
scattering electron and bound electrons preserves its full
quantum coherence throughout the calculation. Our Hamil-

tonian does not contain coupling to external degrees of free-

0.2 /
a M//v ! .
100 150
dom, that would naturally lead to dephasing.
When the bound state on the ring consists of three elec-

0
ity to find an electron with given spin projection either in the ring, trons with spin up and one electron with spin doy¥ig.
15(8)], no spin-flip scattering is possible because such pro-

FIG. 13. Time dependendéor interacting caseof the probabil-

in the left electrode, or in the right electrode.
085313-8
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d=n 1 T T T T

1_ — T T 1 T [ T T T 0~8} %) =0 {
L a L — T total _ - -
0.6 No sointti. [ Soinfio ont . 04 .
sl o spin-tlip. | n- nly. 4 o ]
RN L 11 N U
B 7 : | AN V| L
021 n;=3 n =1{n;=0 n =4 7 0_ b)l T i T T T ¥ :
0 I 1 I [ I ! 0.8+ d=x -
08 ny=l 0 =3 n=2 n;=2 ] H0.6:— -
06k L& ] 04 s
H F - 4
0.2 B
04f - - -
F F 1 ol . ! . 1 . l JL i
0.2 C ] 2 -1.5 -1 -0.5 0
ol— ! . P T T T E
2 15 -1 05 2 15 -1 05 0
E E 0.2 ™1 ' 1 ' 1T 0.2 L L
0.15 N c) WithOl}t ] 0.15 R d) spin-flip ]|
FIG. 15. Transmission probability as a function of the incident L spin-flip 7| V10T j
electron energy fon; (n;) electrons with spin ugdown). Param- & 01 1 oIr 8
eters aree= —4.5, t=\/§L, U=1.0,t,=0.3, andte,=1. 0.05 LL 4 0.05¢ _
cesses turn out to be energetically impossible. The ground 095050 %15 19050
state is, however, fourfold degenerate and the tunneling elec- E E

tsr;rfr]m::tnryggft tt#éoﬁ]%?];_heelegggna;tg?;“%nb¥hghﬁ2§_lngint:ee the FIG. 16. Transmission probability as a function of incident elec-
ground state is degenerate, this process is purely elastic. O" €nergy fom;=2,n,=2, U=15, ande=—20.
In the case oh;=0,n; =4 [Fig. 15b)], the ground state . o
is nondegenerate, however, the spin-flip processes are enéeling through the AB ring in the presence of correlated
getically allowed. We therefore obtain transmission probabilbound electrons. In particular, we have focused on the role of
ity only in spin-flipped channels. Since in this case theelectron-electron interactions on dephasing. While the pro-
ground state is not degenerate, the transmission consists pbsed method clearly has some limitatigamall interacting
purely inelastic processes. regions, inability to describe ionization processes, and ne-
In the case where the ground state is degenerate and tiggect of many-body effects in the leggé nevertheless al-
spin-flip processes are allowed, we expect dephasing to ofows to treat the strong-interaction problem exactly and to
cur both with or without spin flip. Such is the case ®f  dentify the two principal microscopic mechanisms that lead
=1n,=3 [Fig. 15¢)]. The transmittivity without spin flip to the loss of phase coherence in quantum interference ex-
is purely elastic, while the spin-flip processes are preperiments. We showed that a particle can tunnel through the
dominantly elastic, with small contribution from inelastic pg ring at ® =7 elastically by(a) changing the symmetry
Chaf.‘”e's- of the many-electron state, which is possible in the case of
. szlly,' for 'nTZZEnl=2, electrl?ns are fully reflehcted degeneracy, ofb) by flipping the spin. Tunneling can also
irr10trrTet aepgr)lrr:)gprsi:;geezeeraaiﬁe?\?a? Ig;ge(%}ascattermg chann€3ecur in the i_nelgstic chann_el by exciting the many-electrqn
We finally show the influence o'f Iaré}&z 15 on the case state on the ring into an excited state with or without the spin
o _ S ; flip. Depending on the number of bound electrons, their total
of n,=2,n,=2, where atJ=1 transmission remained zero spin. d f .
pin, degeneracy of the ground state, and available energy of

:/Uiofre]le th?ilg d'rr];i:;/a_leg&?;ﬁg?g:fﬁ;%‘;{‘g r%%/edeur:a— tothe incoming electron, the total transmission can be com-
y Sp y ) ’ sed of partial transmissions caused by either one of the

ergy difference between the nondegenerate ground state aﬁ ed processes
the first excited state decreases in comparison With1 Using the method described here, we have thus unraveled
case, as the states become compressed in the lower Hubbshrﬁl

. Con croscopic mechanisms based on electron-electron interac-
hand. We changed the an-site energ)eto 20/in order to tion, which in a mesoscopic system contribute to a finite
keep the electrons bound on the ring. &&=0, there are

transmission through the AB ring in the casedof 7. How-

several energies at which the electron can resonantly tunng er, since our method is based on small physical systems
through the ring, Fig. 1@). At &=, the electron can only that can handle only a few lattice sites and interacting elec-

tunnel inelastically. The energy difference to the first excitedtrons we have no means at this stage to perform accurate
state in then electron Hubbard band is approximately 1.4. cu’Iation of the dephasing rate

. i al

We indeed find that only the electrons that are more than 1.51 Even though all presented results are obtained on the ba-
above_ the bqttom of the energy band can tu_nnel, Figo)16 sis of zero-temperature calculations, the method can be gen-
Sl.JCh 'nela.St'C Processes oceur both withEfeig. 16(c)] or eralized to finite temperatures with some additional numeri-
with spin flip [Fig. 1&d)]. cal effort. On the other hand, our results do not necessarily
predict a finite dephasing rate at zero temperature. Since we
treat only a single electron in the leads, we are completely

Using a simple model and an alternative numericalneglecting the effects of many-body interactions spreading
method we have investigated physics of single electron tunfrom the interacting region to the electrons in the leads. This

V. CONCLUSIONS
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spread forms the basis for the Kondo effect. At temperaturesulations are relevant only at temperatures higher than the
below the Kondo temperatur€c, our approach therefore Kondo temperaturd .

breaks down; in the Kondo regime the spins of the electrons The method can be applied to study other many-body ef-
from the interacting region couple into singlets, with thefects that are expected to be important in nanoscopic struc-
electrons from the leads. This process prevents spin-flip scatures due to strong electron-electron and electron-phonon
tering, which in our calculation represents one of the mechaeoupling. A more general implementation of the presented
nisms for dephasing. Kondo coupling may also lift the de-method is under way.

generacy of the many-electron states in the interacting

region, and thus prevent transmission through the elastic ACKNOWLEDGMENTS

channel, which leads to dephasing at zero temperature ac-
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