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Microscopic mechanisms of dephasing due to electron-electron interactions

R. Žitko and J. Boncˇa
FMF, University of Ljubljana, and J. Stefan Institute, Ljubljana, Slovenia

~Received 18 September 2002; revised manuscript received 3 April 2003; published 13 August 2003!

We develop a nonperturbative numerical method to study tunneling of a single electron through an
Aharonov-Bohm ring where several strongly interacting electrons are bound. Inelastic processes and spin-flip
scattering are taken into account. The method is applied to study microscopic mechanisms of dephasing in a
nontrivial model. We show that the electron-electron interactions described by the Hubbard Hamiltonian lead
to strong dephasing: the transmission probability at fluxF5p is high even at small interaction strength. In
addition to inelastic scattering, we identify two energy-conserving mechanisms of dephasing: symmetry-
changing and spin-flip scattering. The many-electron state on the ring determines which of these mechanisms
will be at play: transmitted current can occur either in elastic or inelastic channels, with or without changing
the spin of the scattering electron.

DOI: 10.1103/PhysRevB.68.085313 PACS number~s!: 73.63.2b, 71.10.2w, 72.10.2d
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I. INTRODUCTION

Advances in the semiconductor technology made it p
sible to study quantum interference effects in mesosco
systems where the wave nature of electrons plays an es
tial role. Particularly noteworthy are the studies of t
Aharonov-Bohm~AB! oscillations in mesoscopic rings.1–3

The analysis of results in terms of the single-electron pict
turned out to be inadequate to describe the totality of p
nomena. Inelastic scattering of electrons is believed to be
predominant mechanism responsible for the loss of the ph
coherence in such experiments and the suppression o
h/e oscillations. When an electron interacts with optic
phonons, the dephasing only occurs through inela
processes.4 At low temperatures the phonon degrees of fre
dom freeze out, therefore other mechanisms for depha
should be taken into account. Measurements of the dep
ing time saturation at low temperatures5,6 show that zero-
point fluctuations of the electromagnetic environment7 could
play a role in explaining this anomalous behavior. It is ne
ertheless believed that at low temperatures the elect
electron interaction is the dominant mechanism
dephasing.8,9 Further support for the importance of electro
correlations at very low temperatures comes from rec
measurements of anomalous temperature dependence o
dephasing time in mesoscopic Kondo wires10 where non-
Fermi-liquid behavior has been found below the Kon
temperature.

The AB geometries have been theoretically studied us
self-consistent mean-field approximations that break do
for degenerate levels, which physically happens at very
temperatures.11–13 The mean-field approximation does n
describe transitions in which the symmetry of the man
electron wave function of correlated bound electro
changes, and it is thus inadequate to study dephas
Keldysh-type Green’s functions and numeric
renormalization-group techniques14,15 or equation of motion
method16 have been applied to AB systems, where calcu
tions were limited to interacting quantum dot with two leve
coupled to reservoirs. Particular attention was devoted to
appearance of the Kondo physics induced by changing
0163-1829/2003/68~8!/085313~10!/$20.00 68 0853
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magnetic flux, however, no spin-flip-induced dephasing
been investigated by these methods. A study of a Coulo
blockade regime was recently done by Xiong and Xion17

with a method similar to the one proposed in the pres
work. Their Hamiltonian, however, maps on a noninteract
model in the limit when the coupling to the leads is ze
Furthermore, they have only investigated spinless fermi
and neglected inelastic scattering channels. Transmissio
two interacting electrons was recently studied on the basi
continuous two-particle Hamiltonian, where an enhancem
of transmission with increasing interaction strength w
found.18

To shed some further light on the problem of dephasing
electron-tunneling experiments, there is obviously a dem
for a capable method that would treat the problem of
scattering of an electron through a finite region whe
electron-electron~e-e! interactions would be exactly take
into account. Such a method should be based on the us
exact correlated many-electron wave functions.

In this paper we propose a method that treats thee-e
interactions by direct diagonalization of the many-bo
Hamiltonian using iterative ~Lanczos! technique. The
method naturally takes into account spin-flip processes, s
can predict the ratio of spin-flip over normal scattering p
cesses. This makes the technique interesting for calcula
spin-polarized transport19 in the field of spintronics.

We apply the method to study single-electron transm
sion through an AB ring withe-e interactions. As is widely
known, an electron perfectly reflects from an AB ring wh
the fluxF penetrating the ring is such that the phases gai
by the electron traveling through the lower or the upper a
of the AB ring cancel (F5p). Such reflection occurs fo
any energy of the incident electron. This remains true e
when there are electrons bound on the AB ring, as long as
system remains noninteracting. The main purpose of our
vestigation is in the influence of the finite Coulomb repulsi
on the transmission of the electron in the case descri
above. We choose the Hubbard model to describe the
ring. The Hubbard model is the simplest and yet the m
important nontrivial prototype model for correlated electro
in the solid state. As we will show, finite Coulomb intera
©2003 The American Physical Society13-1
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tion in certain cases leads to finite transmission of the in
dent electron, despite the fact that the total wave function
the scattering electron and electrons bound on the AB
preserves full quantum coherence. We will therefore refe
the processes that lead to finite transmission in the c
whereF5p asdephasingprocesses since they clearly lea
to diminished AB oscillations observed in experiments. W
show that dephasing can occur either by~a! inelastic pro-
cesses where the tunneling electron excites bound elec
on the ring or by~b! elastic~in regard to energy! processes,
where the tunneling electron changes the symmetry or
spin of the degenerate many-electron wave function. No
change of energy is required in the latter case:19–22dephasing
occurs because the tunneling electron leaves a trace o
‘‘environment,’’ which consists of bound electrons.

II. METHOD

The proposed method is based on the multichannel s
tering technique that was developed for studying the tun
ing of a single electron in the presence of scattering
phonons.23,24 Since its introduction, it has been successfu
applied to a variety of problems where a single electron
coupled to phonon modes.4,25–31 It was even incorporated
into Landauer theory where the influence of electron-pho
scattering on the nonequilibrium electron distribution h
been investigated.32 We now generalize this method to stud
many-electron problems.

A. Model Hamiltonian

While the method can be applied to more general sit
tions and arbitrary geometries of the interaction region,
choose for simplicity a particular physical system which w
also serve as a toy model for the study of thee-e interaction
induced dephasing. We thus consider an AB ring coupled
two ideal one-dimensional leads; see Fig. 1. The ring is
scribed by a Hubbard-type Hamiltonian

H ring5(
j ,s

~ecj s
†cj ,s2teif jcj 11,s

†cj ,s1H.c.!

1U(
j

cj ,↑ †cj ,↑cj ,↓ †cj ,↓ . ~1!

FIG. 1. Aharonov-Bohm ring. Magnetic flux penetrates the c
ter of the ring.
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The operatorcj s
† creates an electron with spins at site j

and we make a formal identificationc7,s
†5c1,s

†. The
phasesf j describe phase changes due to magnetic flux p
etrating the ring. We chose a gauge in which we ascribe
total phase change due to magnetic-field flux,F
52pFM /F0 ~whereFM is the magnetic field flux andF0
5h/e is the flux quantum!, to a single element, e.g.,f1
5F andf j50 ( j Þ1).

The leads are described by a tight-binding Hamiltonia

H lead52t lead(
i ,s

ai 11,s
†ai ,s1H.c. ~2!

2t lead(
i ,s

bi 11,s
†bi ,s1H.c.. ~3!

The operatorai ,s
† creates an electron with spins at sitei on

the left lead, while the operatorbi ,s
† does the same on th

right lead. The ring is coupled to the electrodes with co
pling constantst0,

Hc52t0(
s

~a1,s
†c1,s1H.c.!2t0(

s
~b1,s

†c4,s1H.c.!.

~4!

The coupling constantt0 need not be small: the method a
plies equally well for strong coupling between the interacti
region and the leads.

B. Correlated many-electron states and exact diagonalization

The transmittivity can be meaningfully defined in a man
electron scattering problem only if one single electron lea
the scattering region. For this reason, we restrict the ene
of the incoming electron to be below the ionization thres
old. Our approximation then consists of taking into accou
only those many-electron states in which at most one~scat-
tering! electron is located outside the ring. Before the imp
of the electron~which, for convenience, will be chosen t
have spin up!, there aren5n↑1n↓ other electrons bound on
the AB ring. We truncate all many-body states, where ad
tional electrons hop from the interacting region to the le
When physical parameters of the system, e.g. (e,t,U), are
chosen in such a way that thesen electrons are bound in th
interacting region, the approximation is equivalent to n
glecting the exponentially decaying tails of then-electron
wave function in the leads.

Before the scattering, the bound electrons are therefor
one of then-particle eigenstates of the HamiltonianH ring ,
Eq. ~1!. We denote these states byua i

↑& and their energies by
e i

↑ . The superscript index↑ denotes that the electron in th
lead has spin up.

When the incoming electron enters the ring, the system
in a superposition of the (n11)-particle states which we
denote byub i&. These states are not necessarily eigenst
of H ring . After the scattering there is a single electron in t
leads, while the ring is in a superposition of then-particle
eigenstates ofH ring . These states are theua i

↑& states and~in
the case where the spin of the scattering electron is flipp!

-

3-2
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MICROSCOPIC MECHANISMS OF DEPHASING DUE TO . . . PHYSICAL REVIEW B68, 085313 ~2003!
the n-electron eigenstates withn↑11 spin-up electrons and
n↓21 spin-down electrons. These spin-flipped states are
beled byua i

↓& and their energies bye i
↓ . Because all the pos

sible states of the ring after scattering are orthogonal to e
other, the outgoing channels are well defined and the cur
is conserved.

We calculate the eigenstatesua i
s& using exact diagonaliza

tion of the HamitonianH ring in the suitable region of the
many-particle Hilbert space, taking into account that
Hubbard Hamiltonian is invariant with respect to rotations
the spin space. The diagonalization is therefore performe
the constant (n,Sz) space, whereSz is the conserved compo
nent of the total spin in thez direction. The method can b
applied to Hamiltonians that do not conserveSz at the
expense of significantly more time consuming numeri
calculations.

At zero temperature, the electron scatters on the gro
state of then-particle state in the ring,ua0

↑&. During the
scattering the electron can loose energy by exciting
bound electrons into one of the excitedua i

s& states. The
probability of such transitions is a rapidly decreasing fun
tion of the energy loss, therefore only a small number of
scattering channels~statesua i

s&) has to be considered. Thi
observation is essential for numerical performance of
method: we can efficiently calculate the states from the b
tom of the spectrum of the matrix representations ofH in
suitable (n,Sz) subspaces using the iterative Lanczos te
nique. We have used the implicitly restarted Lancz
method, as implemented inARPACK package.33 The eigenval-
ues and eigenvectors were computed to machine precis

By taking into account only the allowed states, the wa
function that describes the scattering of one electron on
AB ring is given by

uC&5(
i 51

`

(
j ,s

di , j ,s
L ai ,s

†ua j
s&

1(
i 51

`

(
j ,s

di , j ,s
R bi ,s

†ua j
s&1(

j
ej ub j&, ~5!

where di , j ,s
L , di , j ,s

R , and ek are the coefficients to be
determined.

C. Reduction to a sparse system of linear equations

We consider a steady-state scattering described by
Schrödinger equation

HuC&5EuC&, ~6!

with H5H ring1H lead1Hc . This equation cannot be exact
solved in the space, spanned on theua i

s& and ub i& states,
because applying the Hamiltonian to the wave-function
satz takes us out of this space by generating terms w
more than one electron exits the scattering region. Omis
of these terms represents the main approximation used in
method. This approximation leads to an error that is not s
nificant for suitably chosen model parameters~see below!.

Operating on Eq.~6! from the left with ^b l u, we obtain
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2t0(
j ,s

bl , j ,s
L d1,j ,s

L 2t0(
j ,s

bl , j ,s
R d1,j ,s

R 1(
k

hl ,kek5Eel ,

~7!

whereb’s denote scalar products

bl , j ,s
L 5^b l uc1,s

†ua j
s&,

bl , j ,s
R 5^b l uc4,s

†ua j
s&, ~8!

while hl ,k5^b l uH ringubk& are the matrix elements of Hamil
tonianH ring in the n11 electron subspace.

By operating with^a j
sua1,s from the left we get

2t leadd2,j ,s
L 2t0(

k
~bk, j ,s

L !* ek1e j
sd1,j ,s

L 5Ed1,j ,s
L . ~9!

D. Pruning the leads

In an open outgoing channel (j ,s) a plane wave can
propagate, so thatd2,j ,s

L 5exp(ikj,s)d1,j ,s
L . By energy conser-

vation the wave numberkj ,s is obtained from

e022t leadcos~K !5e j
s22t leadcos~kj ,s!. ~10!

The energye0 is the initial energy of then-electron bound
state on the ring,K is the wave number of the incomin
electron, ande j

s is the final energy of the bound electron
Equation~9! can thus be written as

d1,j ,s
L 5

2t0(
k

~bk, j ,s
L !* ek

E2e j
s1t leadexp~ ik j ,s!

. ~11!

Similar equation can be obtained for exponentially decay
~closed! outgoing channels that we also take into account~up
to some cutoff energy, above which the inclusion of furth
closed channels does not change the results!. These are de-
fined through the relationd2,j ,s

L 5exp(2kj,s)d1,j ,s
L and

e022t leadcos~K !5e j
s22t leadcosh~kj ,s!. ~12!

Equation~9! can, in this case, be written as

d1,j ,s
L 5

2t0(
k

~bk, j ,s
L !* ek

E2e j
s1t leadexp~2k j ,s!

. ~13!

In the incoming channel we have both the incoming a
outgoing waves,dm,0,↑

L 5exp(2iKm)1r exp(iKm). We obtain
d2,0,↑

L 5exp(iK)d1,0,↑
L 1exp(22iK)21. The equation for the in-

coming channel thus contains an additional inhomogene
term exp(22iK)21, and Eq.~9! for the incoming channel is

d1,0,↑
L 5

2t0(
k

~bk,0,↑
L !* ek2t lead@exp~22iK !21#

E2e01t leadexp~ iK !
.

~14!
3-3
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Using Eqs.~11!, ~13!, and~14!, and similar equations fo
the right lead, both leads can be removed~pruned! from the
problem.24

Equations~7!, ~11! and equivalent equations for other ou
going channels form a system of linear equations for
knownsd1,j ,s

L , d1,j ,s
R , andej . This sparse system is solve

for different energies of the incoming electron using the S
perLU library.34

The partial transmittivity through channel (j ,s) is given
by

Tj ,s~E!5
sin~kj ,s!

sin~K !
ud1,j ,s

R u2. ~15!

Since the method is based on exact solution of many-elec
problem, we can compute transmission at arbitrarily la
values ofU.

E. Extended interaction region

Results can be improved by extending the interaction
gion which is solved exactly by the Lanczos method by a
ing additional sites from the leads. This procedure takes
account the decaying tails of bound electron wave functi
in the leads at the expense of increasing the computati
Hilbert space. The error due to the omission of the ter
corresponding to a second electron jumping out of the or
nal interaction region@see discussion following Eq.~6!# is
exponentially reduced with the inclusion of each additio
site from the leads.

These improvements mainly lead to energy shifts of
resonance peaks while the general characteristics of the s
tra remain unchanged. In principle, the region could be
tended until the desired convergence is achieved. In our
culations the interacting region consisted of the ring and
additional site from each lead; see Fig. 1. In fact, we had
take into account the site on the left electrode in order
ensure that the incident electron spreads into two pa
waves that propagate through both arms of the ring. T
additional site on the right electrode is required so that
partial waves can interfere, which leads to the proper dec
tion of the Aharonov-Bohm effect. The inclusion of the
two sites was therefore essential in our studies of the dep
ing mechanisms.

In cases where the ground state of the interaction reg
was degenerate, we averaged the transmittivity spectra
all the degenerate states. The variational space taken
account in our calculation was equivalent to a Hubb
model on eight sites with no translational symmetry.

The largest problem that could be effectively solved h
three bound electrons with spin up and four electrons w
spin down. In this case there are;8000 ua i

s& states and
;5000 ub i& states. We kept 200 lowest-lyingua i

s& states to
define our scattering channels~diagonalization took 3 min of
a modest personal computer!. Solving the sparse system o
complex linear equations for a range of the incoming el
tron energies took 200 min for 237 data points~or about 1
min per data point on the average!. This step is the mos
computationally demanding part of our technique. This is
08531
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main reason why we limited our calculations to eight s
models, even though the Lanczos method easily han
much larger lattices.

III. RESULTS—ONE BOUND ELECTRON

We now investigate the effect of interactions on an el
tron as it tunnels through the ring. The incoming electron h
spin up, and there is one bound electron with spin do
inside the ring. The on-site energies aree524.5t lead, the
overlap integrals aret5A3t lead, and we sett lead51.

First we consider the noninteracting case. In the abse
of the magnetic field the transmission reaches unity at
resonance, Fig. 2~a!. The electron is fully reflected at an
incident energy when the magnetic flux isF5p, Fig. 2~b!.
This is the usual Aharonov-Bohm effect.

We now turn on the interaction. AtF50, we still see a
unity peak at the energy of the single-electron resonan
followed by smaller satellite peaks caused by the interact
Fig. 2~c!. At F5p, when in the absence ofU the electron is
fully reflected, we obtain very high transmission probabil
despite relatively smallU50.2, Fig. 2~d!. In the largest peak
the transmission approaches the valueT51/2. Since the in-
coming electron and the bound electron are not entang
their total spin is not well defined, therefore the total wa
function is a superposition of a singlet and a triplet state w
equal amplitudes: u↑↓&51/A2(uS51,Sz50&1uS50,Sz

50&). The triplet scattering has zero transmission proba
ity at F5p since in the Hubbard model only singlet ele
trons interact. The singlet scattering, however, reaches
unitary limit at the main resonance peak. Averaging ov
both contributions, we indeed getT51/2.

The spin-flip scattering part of the transmission probab
ity is shown in the inset of Fig. 2~d!. The spin-flip and nor-
mal scattering contribute equally to the total transmiss
probability. Both are purely elastic with respect to ener
changes.

FIG. 2. Transmission probability as a function of the incide
electron energy for one electron with spin down bound on the ri
The incoming electron had spin up. The coupling to the lead ist0

50.4. In all cases transmission is purely elastic.
3-4
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A. Lead decoupling atFÄp and scattering mechanisms
at nonzero U

To gain more insight into the mechanism of nonzero el
tron tunneling probability, we present a simple physical p
ture of electron tunneling for the case ofF5p. We first
transform the AB ring Hamiltonian~1! from the basis of
localized states to a basis ink space. For more generality, w
can now assume that the ring consists of an arbitrary e
numberm of sites, which we now number from 0 tom21,
so that site 0 is coupled to the left electrode, while sitem/2 is
coupled to the right electrode.

The noninteracting part of the Hamiltonian~1! is diagonal
in the plane-wave basis,

dn,s5
1

Am
(
j 51

m

e2 i jk ncj ,s , ~16!

with wave numberskn given by the periodic boundar
condition exp(iknm)51, or kn52pn/m, where n
50,61, . . . ,6m/221,m/2. The corresponding eigenvalue
are

En5e22tcos~kn2F/m!. ~17!

When F5p, all the noninteracting eigenstates are twofo
degenerate since cos@kn2(p/m)#5cos@k12n2(p/m)#. The
complete orthonormal set of states is therefore compose
m/2 pairs of states with wave numberskn and k12n for n
ranging from 1 tom/2. For each pair we can form two linea
combinations of states:

aL,n,s5
1

A2
~dn,s1d12n,s!

5
1

A2m
(

j
~eiknj1e2 iknjei2p j /m!cj ,s ,

aR,n,s5
1

A2
~dn,s2d12n,s!

5
1

A2m
(

j
~eiknj2e2 iknjei2p j /m!cj ,s . ~18!

It is easy to see that the coefficient ofcm/2,s in the expression
for aL,n,s is zero, and likewise for the coefficient ofc0,s in
the expression foraR,n,s . This means that the eigenstate d
noted byL is coupled only to the left electrode, while eige
stateR is coupled only to the right electrode; see Fig. 3.
the noninteracting case the incoming electron can only t
nel from the left electrode to anL state. This state is decou
pled from the right electrode, and since there is no term
the Hamiltonian, which would allow transitions fromL to R
state, the electron is fully reflected.

There are therefore two equivalent physical descripti
of zero transmittivity of an AB ring. One can either consid
it as a destructive interference of partial electron waves
08531
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travel in the upper and lower arm of the ring, or as an eff
tive decoupling of both electrodes due to a topological ph
shift.

We will now write the interacting part of the Hamiltonia
in the new basis and search for processes that are respon
for the nonzero transmission. From Eqs.~16! and ~18! we
can expresscj ,s as

cj ,s5
2ei (p j /m)

A2m
(
n51

m/2

@cos~ k̃nj !aL,n,s1sin~ k̃nj !aR,n,s#.

~19!

where we have introduced shifted wave numbers

k̃n5
2p

m S n2
1

2D . ~20!

The particle number operator can then be expressed

cj ,s
† cj ,s5

2

m (
p,q

cos~ k̃pj !cos~ k̃qj !aL,p,s
† aL,q,s

1sin~ k̃pj !sin~ k̃qj !aR,p,s
† aR,q,s

1cos~ k̃pj !sin~ k̃qj !aL,p
† aR,q,s

1sin~ k̃pj !cos~ k̃qj !aR,p
† aR,q,s . ~21!

We now see that the Hubbard interaction te
( j cj ,↑ †cj ,↑cj ,↓ †cj ,↓ is a sum overj of products of four trigo-
nometric functions. Each one of these products can be w
ten as a sum of trigonometric functions by using trigonom
ric reduction formulas such as,

8sin~a!sin~b!sin~c!sin~d!

52cos~a2b2c2d!1cos~a1b2c2d!

1cos~a2b1c2d!2cos~a1b1c2d!

1cos~a2b2c1d!2cos~a1b2c1d!

2cos~a2b1c1d!1cos~a1b1c1d!. ~22!

FIG. 3. At F5p, one can rotate each pair of the degener
eigenstates in such a way that one of them couples only to the
electrode and the other to the right electrode. In the absenc
interactions both electrodes are effectively decoupled.
3-5
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We note that reduction formulas for an even number of s
and cosine functions consist of a sum of cosine functio
while the reduction formulas for an odd number of sine a
cosine functions consist of a sum of sine functions. This f
is important to understand the selection rules that lead
dephasing.

The arguments of functions on the right-hand sides of
reduction formulas are sums of the form

2p j

m Fp2
1

2
6S q2

1

2D6S r 2
1

2D6S s2
1

2D G ,
i.e., of form 2p j t /m, wheret is an integer. When the sum
mation over site indexj is performed, most of the terms wi
drop, since

1

m (
j 51

m

cosS 2pt

m
j D5d t,0 ,

1

m (
j 51

m

sinS 2pt

m
j D50, ~23!

where the first line in Eq.~23! can also be viewed as th
momentum conservation for the case of twisted bound
conditions. All interaction terms with a coefficient that aft
trigonometric reduction involves a sine function will ther
fore vanish. Such vanishing terms come from products o
odd number of trigonometric functions of each kind, the
fore they are of the form such as

aR,p,↑
† aL,q,↑aL,r ,↓

† aL,s,↓ . ~24!

Such terms would allow~for p5q,r 5s) transitions of the
tunneling electron from stateL to R without changing the
bound-electron state~i.e., without leaving any imprint on the
environment!. Such transitions would clearly be in contradi
tion with our understanding of the dephasing in the AB rin

FIG. 4. Transmission due to elastic symmetry-chang
scattering.

FIG. 5. Transmission due to inelastic symmetry-chang
scattering.
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The terms with four sine and with four cosine functio
are of little importance for our purposes. They describe
terlevel repulsion and interlevel transitions without chang
of the LR character of the electron states, and therefore
not lead to a finite transmission. We will focus instead
terms with two sine and two cosine functions. They are
three kinds. The first one consists of terms of the form

aR,p,↑
† aL,q,↑aL,r ,↓

† aR,s,↓ . ~25!

These terms describe what we callsymmetry-changing tran
sitions: the tunneling electron~with spin up! in the L state
jumps to aR state, while a bound electron undergoes a tr
sition fromR to L state. Such a transition can either be elas
~with respect to the energy of the tunneling electron! if p
5q, r 5s ~Fig. 4!, or inelastic~Fig. 5!. The second kind of
terms is of the form

aL,p,↑
† aL,q,↑aR,r ,↓

† aR,s,↓ . ~26!

These terms correspond tospin-flip transitions: the tunneling
electron with spin up in theL,q state makes a transition to
lower-laying L,p state, while a bound electron undergoes
transition from theR,s to theR,r state, Fig. 6. Transition can
again be either elastic~with respect to energy! for p5q, r
5s ~Fig. 6!, or inelastic~Fig. 7!.

Finally, terms of the form

aR,p,↑
† aL,q,↑aR,r ,↓

† aL,s,↓ ~27!

can correspond either to symmetry-changing~Fig. 8! or to
spin-flip transitions~Fig. 9!, depending on thep,q,r ,s quan-
tum numbers.

B. Scattering of a wave packet

To illustrate more in detail our results presented in t
preceding section, we present here numerically exact ca
lation of scattering of an incoming electron~described as a
wave packet with a given finite-energy width! on the electron

g

g

FIG. 6. Transmission due to elastic spin-flip scattering.

FIG. 7. Transmission due to inelastic spin-flip scattering.
3-6
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with the opposite spin, bound on the Aharonov-Bohm rin
Since we are dealing with a simple case of only two el
trons, this problem can be solved numerically exactly
direct integration of the two-body Schro¨dinger equation
i\duc&/dt5Huc&. We take into consideration a sufficient
high number of chain sites, so that the positional spread
the wave packet is smaller than the length of the left and
right lead. We chooseN5200 sites, where the six-sit
Aharonov-Bohm ring occupies positions ranging from 1
to 106.

We construct the wave function at the initial time asuc&
5c↑packet

† f↓bound
† u0&. The operatorf↓bound

† creates an electron
with spin down in the bound eigenstate of the Aharono
Bohm ring. We calculated this state using direct diagonali
tion. The operatorc↑packet

† is

c↑packet
† 5C(

k
expF2

~k2k0!2

2s2 Gexp~2 ikNcenter!c↑k
† ,

~28!

where c↑k
† 51/AN( j 51

N exp(ikj)c↑j
† and C is a normalization

constant. This operator creates an electron with spin up
wave packet centered at siteNcenter, which has the averag
wave numberk0 and a spread ofs in thek space. We choose
k05p/2 to place the wave packet in the middle of the ene
band of the leads with the group velocityv5]E/]k(k5k0)
5t51. We sets50.13 andNcenter550.

The equation of motion was then integrated us
Bulirsch-Stoer method, which gives highly accurate resu
for this type of problem. The accuracy and stability can
conveniently estimated by monitoring the deviation from t
proper normalization of the wave-function. Using th
Bulirsch-Stoer method, the normalization differs from 1
the eighth decimal place after the scattering.

We set the parameters toe523.0, t5A3, t050.6, and
t lead51. For the noninteracting system the transmittivity

FIG. 8. Transmission due to elastic symmetry-changing sca
ing ~of the second kind!.

FIG. 9. Transmission due to elastic spin-flip scattering~of the
second kind!.
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F5p is 0 for all electron energies, while the transmittivi
of an interacting system withU51 is shown in Fig. 10. The
location and the spread of the energies of the wave pa
are represented in the figure by a two-sided arrow.

The electron density before and after the scattering aF
5p is shown in Fig. 11 for the noninteracting case and
Fig. 12 for the interacting case.37 For U50, the wave packet
is perfectly reflected, as expected. ForU51, the wave
packet is partially transmitted through the scattering regi
In fact, the expectation value to find an electron in the s
ond electrode,PR , corresponds to the following average:

PR5E dk T@e~k!#uc↑packet
† ~k,t50!u2, ~29!

where the transmissionT is calculated using the method from
Sec. II and is presented in Fig. 10. This equation conne
and thus validates the two distinct methods. It is furtherm
worth stressing that the probability of finding electrons w
either orientation of spin in the second electrode is equal;

r-

FIG. 10. Transmission probability as a function of the incide
electron energy for one electron with spin down bound on the ri

FIG. 11. Electron density before and after the scattering
the wave packet on an Aharonov-Bohm ring atF5p: noninteract-
ing case. Note that the vertical scale is the same for both s
projections: the scale was chosen so that the wave packet is cl
visible.
3-7
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R. ŽITKO AND J. BONČA PHYSICAL REVIEW B 68, 085313 ~2003!
Figs. 12 and 13. This can be explained as follows: fin
transmission is a direct consequence of interactionU, which
in the case of two electrons acts only on the singlet par
the wave function. The triplet part does not feelU due to the
on-site nature of the interaction. Transmission therefore
curs only through the singlet channel.

C. Aharonov-Bohm oscillations

Aharonov-Bohm effect is experimentally observed
magnetic-flux-dependent oscillations of the electric curr
through a mesoscopic ring structure.1 From calculatedT(E)
spectra we could estimate the zero-bias conductance aG
5G0T(EF), whereG052e2/h is the conductance quantum
and EF is the common Fermi level of both leads. In o
minimal model with a discrete number of resonance state
the ring, the energy shifts of the peaks when the flux
changed@see Eq. ~17!# lead to pronounced conductanc
variations not necessarily connected to the Aharonov-Bo
effect itself. This is a direct consequence of using a sm

FIG. 12. Electron density before and after the scattering of
wave packet on the Aharonov-Bohm ring atF5p: interacting
case.

FIG. 13. Time dependence~for interacting case! of the probabil-
ity to find an electron with given spin projection either in the rin
in the left electrode, or in the right electrode.
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discrete number of sites. It is therefore more revealing
observe the variations of theintegral of transmittivity over
the whole energy band,*T(E)dE. This quantity is relatively
insensitive to energy shifts of the peaks, while it shou
clearly show AB oscillations which affect the height of all o
the peaks.

In Fig. 14 we present this integral as a function ofF for
a number of increasing interaction strengthsU
50,0.1, . . . ,1.0. The amplitude of AB oscillations notice
ably decreases as the interaction grows stronger. Figure
also shows that the integral transmittivity is essentially int
action independent around zero flux,F50. A similar insen-
sitivity of the transmittivity sum rule has been discovered
the case of tunneling in the presence of electron-pho
coupling.4,35,36This insensitivity breaks down at largerU.

IV. MANY BOUND ELECTRONS ON THE RING

We now consider several interacting (U51) bound elec-
trons on the ring. All presented cases are calculated at
flux value F5p, unless otherwise specified. Spin of th
incoming electron is up. We have limited the energy of t
incident electron to a half of the bandwidth, i.e.,E
5@22,0#, in order to avoid ionization. Our main goal in th
section is to investigate the circumstances under whic
scattering electron obtains a finite transmission probability
F5p when scattering through the AB ring in the presen
of many bound electrons. We show that in most cases C
lomb interaction leads to finite transmission. In our work w
refer to processes that cause finite transmission asdephasing
processes. To avoid confusion we point out once more th
the total wave function describing a many-body state of
scattering electron and bound electrons preserves its
quantum coherence throughout the calculation. Our Ham
tonian does not contain coupling to external degrees of fr
dom, that would naturally lead to dephasing.

When the bound state on the ring consists of three e
trons with spin up and one electron with spin down@Fig.
15~a!#, no spin-flip scattering is possible because such p

e
FIG. 14. The flux dependence of integrated transmission pr

ability for different interaction strengths. The coupling to the lea
is t050.6, all other parameters are as before.
3-8
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MICROSCOPIC MECHANISMS OF DEPHASING DUE TO . . . PHYSICAL REVIEW B68, 085313 ~2003!
cesses turn out to be energetically impossible. The gro
state is, however, fourfold degenerate and the tunneling e
tron can get through the ring at finiteU by changing the
symmetry of the many-electron state on the ring. Since
ground state is degenerate, this process is purely elastic

In the case ofn↑50,n↓54 @Fig. 15~b!#, the ground state
is nondegenerate, however, the spin-flip processes are
getically allowed. We therefore obtain transmission proba
ity only in spin-flipped channels. Since in this case t
ground state is not degenerate, the transmission consis
purely inelastic processes.

In the case where the ground state is degenerate and
spin-flip processes are allowed, we expect dephasing to
cur both with or without spin flip. Such is the case ofn↑
51,n↓53 @Fig. 15~c!#. The transmittivity without spin flip
is purely elastic, while the spin-flip processes are p
dominantly elastic, with small contribution from inelast
channels.

Finally, for n↑52,n↓52, electrons are fully reflected
from the ring since there are no allowed scattering chan
in the appropriate energy interval, Fig. 15~d!.

We finally show the influence of largeU515 on the case
of n↑52,n↓52, where atU51 transmission remained zer
in the whole interval of incoming electron energy due
widely spaced many-electron levels. At largeU515, the en-
ergy difference between the nondegenerate ground state
the first excited state decreases in comparison withU51
case, as the states become compressed in the lower Hub
band. We changed the on-site energy toe5220 in order to
keep the electrons bound on the ring. AtF50, there are
several energies at which the electron can resonantly tu
through the ring, Fig. 16~a!. At F5p, the electron can only
tunnel inelastically. The energy difference to the first exci
state in then electron Hubbard band is approximately 1.
We indeed find that only the electrons that are more than
above the bottom of the energy band can tunnel, Fig. 16~b!.
Such inelastic processes occur both without@Fig. 16~c!# or
with spin flip @Fig. 16~d!#.

V. CONCLUSIONS

Using a simple model and an alternative numeri
method we have investigated physics of single electron

FIG. 15. Transmission probability as a function of the incide
electron energy forn↑ (n↓) electrons with spin up~down!. Param-
eters aree524.5, t5A3, U51.0, t050.3, andt lead51.
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neling through the AB ring in the presence of correlat
bound electrons. In particular, we have focused on the rol
electron-electron interactions on dephasing. While the p
posed method clearly has some limitations~small interacting
regions, inability to describe ionization processes, and
glect of many-body effects in the leads!, it nevertheless al-
lows to treat the strong-interaction problem exactly and
identify the two principal microscopic mechanisms that le
to the loss of phase coherence in quantum interference
periments. We showed that a particle can tunnel through
AB ring at F5p elastically by~a! changing the symmetry
of the many-electron state, which is possible in the case
degeneracy, or~b! by flipping the spin. Tunneling can als
occur in the inelastic channel by exciting the many-elect
state on the ring into an excited state with or without the s
flip. Depending on the number of bound electrons, their to
spin, degeneracy of the ground state, and available energ
the incoming electron, the total transmission can be co
posed of partial transmissions caused by either one of
listed processes.

Using the method described here, we have thus unrav
microscopic mechanisms based on electron-electron inte
tion, which in a mesoscopic system contribute to a fin
transmission through the AB ring in the case ofF5p. How-
ever, since our method is based on small physical syst
that can handle only a few lattice sites and interacting e
trons, we have no means at this stage to perform accu
calculation of the dephasing rate.

Even though all presented results are obtained on the
sis of zero-temperature calculations, the method can be
eralized to finite temperatures with some additional num
cal effort. On the other hand, our results do not necessa
predict a finite dephasing rate at zero temperature. Since
treat only a single electron in the leads, we are comple
neglecting the effects of many-body interactions spread
from the interacting region to the electrons in the leads. T

t

FIG. 16. Transmission probability as a function of incident ele
tron energy forn↑52, n↓52, U515, ande5220.
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R. ŽITKO AND J. BONČA PHYSICAL REVIEW B 68, 085313 ~2003!
spread forms the basis for the Kondo effect. At temperatu
below the Kondo temperatureTK , our approach therefore
breaks down; in the Kondo regime the spins of the electr
from the interacting region couple into singlets, with t
electrons from the leads. This process prevents spin-flip s
tering, which in our calculation represents one of the mec
nisms for dephasing. Kondo coupling may also lift the d
generacy of the many-electron states in the interac
region, and thus prevent transmission through the ela
channel, which leads to dephasing at zero temperature
cording to our findings. Other mechanisms leading
dephasing in our approach might as well be modified in t
low-temperature regime. We therefore conclude that des
the zero-temperature formalism used in our method, our
y

nd

et

nd

hy

nd

-
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culations are relevant only at temperatures higher than
Kondo temperatureTK .

The method can be applied to study other many-body
fects that are expected to be important in nanoscopic st
tures due to strong electron-electron and electron-pho
coupling. A more general implementation of the presen
method is under way.
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