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The system of several �N� quantum dots coupled in parallel to the same single-mode conduction channel can
be modeled as a single-channel N-impurity Anderson model. Using the generalized Schrieffer-Wolff transfor-
mation we show that near the particle-hole symmetric point, the effective Hamiltonian in the local moment
regime is the N-impurity S=1/2 Kondo model. The conduction-band-mediated RKKY exchange interaction
between the dots is ferromagnetic and at intermediate temperatures locks the moments into a maximal spin
S=N /2 ground state. We provide an analytical estimate for the RKKY interaction. At low temperatures the spin
is partially screened by the conduction electrons to N /2−1/2 due to the Kondo effect. By comparing accurate
numerical renormalization group results for magnetic susceptibility of the N-impurity Anderson model to the
exact Bethe ansatz results of a S=N /2 SU�2� Kondo system we show that at low-temperature the quantum dots
can be described by the effective S=N /2 Kondo model. Moreover, the Kondo temperature is independent of
the number of impurities N. We demonstrate the robustness of the spin N /2 ground state as well as of the
associated S=N /2 Kondo effect by studying the stability of the system with respect to various experimentally
relevant perturbations. We finally explore various quantum phase transitions driven by these perturbations.
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I. INTRODUCTION

The Kondo effect emerges as the increased scattering rate
of the conduction band electrons at low temperatures due to
the presence of magnetic impurities which induce spin-flip
scattering. It leads to various anomalies in the thermody-
namic and transport properties of the Kondo systems. It is
usually described using simplified quantum impurity models
such as the Kondo model and the Anderson model.1 The
quantum impurity models attract the interest of the solid-
state physics community both due to their unexpectedly
complex behavior and intrinsic beauty, as well as due to their
ubiquitous applicability to a vast array of physical systems
such as bulk Kondo systems, heavy-fermion compounds and
other strongly correlated systems,2 dissipative two-level
systems,3 single magnetic impurities, and quantum dots.4–6

After the properties of single-impurity models were un-
raveled using a complementary set of techniques �the scaling
approach, Wilson’s numerical renormalization group, Bethe
ansatz solution, and various large-N expansion schemes�,2
the attention has increasingly focused to multiple-impurity
models. Research in this field has recently increased due to a
multitude of experimental results made possible by advances
in micro- and nanotechnology. The multiple-impurity mag-
netic nanostructures under study are predominantly of two
kinds: clusters of magnetic adsorbates on surfaces of noble
metals �Ni dimers,7 Ce trimers,8 molecular complexes9� and
systems of multiple quantum dots.10–14

The most important additional element that emerges in
multiple-impurity models is the Ruderman-Kittel-Kasuya-
Yosida �RKKY� exchange interaction.15 It arises when the
magnetic moments on the impurities induce spin polarization
in the conductance band which leads to magnetic coupling of
moments that are separated in space. The RKKY interaction
depends on the interimpurity distance and can be either fer-
romagnetic or antiferromagnetic.

The competition between the antiferromagnetic RKKY in-
teraction and the Kondo effect in two magnetically coupled
local moments leads to a quantum phase transition at J
�TK between strongly bound local magnetic singlet for J
�TK and two separate Kondo singlets for J�TK.16–20 The
role of the antiferromagnetic exchange interaction was also
studied in the context of double quantum dots �DQD�.21–25

Two mechanisms can contribute to the effective exchange
interaction between the dots: the conduction-band mediated
RKKY interaction and the superexchange mechanism due to
interdot electron hopping. Depending on the setup �serial or
parallel embedding of the dots between the source and drain
leads�, either or both mechanisms may be significant. In
magnetically coupled dots, embedded between the leads in
series, the conductance is low for small exchange coupling
when the Kondo singlets are formed between each dot and
adjacent lead. Conductance is also low for large exchange
coupling, when a local singlet state forms between the mo-
ments on the dots. In contrast, the conductance reaches the
unitary limiting value of 2e2 /h in a narrow interval of J, such
that J�TK.21,22 The introduction of additional electron hop-
ping between dots breaks the quantum critical transition,
nevertheless, some signatures of the quantum phase transi-
tion remain detectable.22

Strong ferromagnetic RKKY interaction between two
magnetic impurities coupled to two conduction channels
leads to three different regimes. At temperatures comparable
to RKKY interaction, ferromagnetic locking of impurity
spins occurs; this is followed by a two-stage freezing out of
their local moment as they become screened by the conduc-
tion electrons.26 This scenario was corroborated by numeri-
cal studies of the two-impurity Kondo model27 and the
Alexander-Anderson model.28 Antiferromagnetic and ferro-
magnetic RKKY interactions lead to different transport prop-
erties of DQD systems.29,30 Due to recent advances in nano-
technology, the effects of RKKY interaction on transport
properties became directly observable.13 Conductance
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through Aharonov-Bohm �AB� interferometers with embed-
ded quantum dots also depends on the RKKY interactions,
which in turn depends on the magnetic flux.31–33 A similar
system of two quantum dots, side-coupled to a single-mode
channel, allows one to study the crossover between fully
screened and underscreened Kondo impurity.34

The physics of RKKY interactions is also related to the
studies of the Kondo effect in integer-spin quantum dots.35

By tuning the magnetic field, the energy difference between
singlet and triplet spin states can be tuned to zero. At the
degeneracy point, a large zero-bias resonance with an in-
creased Kondo temperature is observed,35 which can be un-
derstood in the framework of a two-orbital Anderson
model.36

The interplay of the Kondo effect and the interimpurity
exchange interaction leads to a number of interesting phe-
nomena observed in different realizations of the double
quantum dot systems. For this reason, we present in this
work a study of more general N quantum dot systems. Using
the numerical renormalization group �NRG� technique as our
primary tool and various analytical approaches we investi-
gate the effects of the RKKY interaction in a multiple-
impurity Anderson model. We present results of thermody-
namic properties, in particular the impurity contribution to
the magnetic susceptibility and the entropy, as well as vari-
ous correlation functions. This work also provides a setting
for further studies of transport properties of this class of sys-
tems.

The paper is organized as follows. In Sec. II we describe
the class of models under study as well as model parameters
and approximations used in this work. In Sec. III we describe
the existence of a hierarchy of separated time �and energy�
scales and we introduce effective models valid at different
temperatures. In Sec. IV we describe the numerical methods
that are used in Sec. V to study the multiple-impurity Ander-
son models. Finally, in Sec. VI we test the stability of the
S=1 state in the two impurity model with respect to various
perturbation. Tedious derivations of scaling equations and
perturbation theory approaches are given in the appendixes.

II. THE MODEL

We study models of N impurities coupled to one single-
mode conduction channel. The motivation for such models
comes primarily from experiments performed on systems of
several quantum dots connected in parallel between source
and drain electron reservoirs. Since quantum dots can be
made to behave as single magnetic impurities, such systems
can be modeled in the first approximation as several Ander-
son impurities embedded between two tight-binding lattices
as shown schematically in Fig. 1. If the coupling to the left
and right electrode of each quantum dot is symmetric, it can
be shown that each dot couples only to the symmetric com-
bination of conduction electron wave functions from left and
right lead, while the antisymmetric combinations of wave
functions are totally decoupled and are irrelevant for our
purpose.37 We can thus model the parallel quantum dots us-
ing the following simplified Hamiltonian, which we name
the “N-impurity Anderson model:”

H = Hband + Hdots + Hc. �1�

Here Hband=�k��kck�
† ck� is the conduction band Hamiltonian.

Hdots=�i=1
N Hdot,i with

Hdot,i = ��ni − 1� +
U

2
�ni − 1�2 = �dni + Un↑in↓i �2�

is the quantum dot Hamiltonian. Finally,

Hc =
1
�L

�
k�i

�Vkdi�
† ck� + H.c.� �3�

is the coupling Hamiltonian, where L is a normalization con-
stant. The number operator ni is defined as ni=��di�

† di�. Pa-
rameter � is related to the more conventional on-site energy
�d by �=�d+U /2, where U is the on-site Coulomb electron-
electron �e-e� repulsion. For �=0 the model is particle-hole
symmetric under the transformation ck�

† →ck,−�, di�
† →−di,−�.

Parameter � thus represents the measure for the departure
from the particle-hole symmetric point.

To cast the model into a form that is more convenient for
a numerical renormalization group study, we make two more
approximations. We first linearize the dispersion relation �k
of the conduction band, which gives �k=Dk. The wave num-
ber k runs from −1 to 1, therefore 2D is the width of the
conduction band. This assumption is equivalent to adopting a
constant density of states, �0=1/ �2D�. Second, we approxi-
mate the dot-band coupling with a constant hybridization
strength, �=��0�VkF

�2. Neither of these approximations af-
fects the results in a significant way. In the rest of the paper,
we will present results in terms of the parameters D and �,
instead of the parameters t and t� of the original tight-binding
models depicted in Fig. 1. Our notation follows that of Refs.
38 and 39 for easier comparison of the N-impurity results
with the single-impurity case.

FIG. 1. �Color online� Systems of parallel quantum dots. The
tight-binding hopping parameter t determines the half-width of the
conduction band, D=2t, while parameter t� is related to the hybrid-
ization � by � /D= �t� / t�2.
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III. LOW-TEMPERATURE EFFECTIVE MODELS

Our primary goal is to demonstrate that the low-
temperature effective model for the multiple impurity system
is the S=N /2 SU�2� Kondo model:

H = Hband + �
k�k

Jk�kskk� · S , �4�

where skk�= 1
2�		�ck	

† �		�ck�	� is the local-spin density in the
Wannier orbital in the conduction band that couples to all N
impurities. S is the collective impurity S=N /2 spin operator
and Jk�k is the momentum-dependent antiferromagnetic spin-
exchange interaction that can be derived using the Schrieffer-
Wolff transformation. Results for Jk�k are independent of N.

We first argue in favor of the validity of the effective
Hamiltonian, proposed in Eq. �4�, by considering the differ-
ent time scales of the original N-impurity Anderson problem.
To simplify the argument we further focus on the �nearly�
symmetric case ��U within the Kondo regime, U / ����
�1.

The shortest time scale, 
U�� /U, represents charge ex-
citations. The longest time scale is associated with the Kondo
effect �magnetic excitations� and it is given by 
K�� /TK
where TK is the Kondo temperature of the single impurity
Anderson model, given by Haldane’s expression

TK = 0.182U��0JK exp�−
1

�0JK
� , �5�

where JK is the effective antiferromagnetic Kondo exchange
interaction and �0JK=8� /�U. This expression is valid for
U�D and �=0.

As we will show later, there is an additional time scale

J�� /JRKKY, originating from the ferromagnetic RKKY
dot-dot interactions:

JRKKY � U��0JK�2 =
64

�2

�2

U
. �6�

From the condition for a well-developed Kondo effect,
U / �����1, we obtain JRKKY�U. We thus establish a hier-
archy of time scales 
U�
J�
K.

Based on the three different time scales, we predict the
existence of three distinct regimes close to the particle-hole
symmetric point. The local moment regime is established at
T�T1

*, where T1
*=U /	 and 	 is a constant of the order

one.38 In this regime the system behaves as N independent
spin S=1/2 impurities. At T�TF

* , where TF
* =JRKKY/� and �

is a constant of the order one, spins bind into a high-spin S
=N /2 state. With further lowering of the temperature, at T
�TK the S=N /2 object experiences the Kondo effect which
screens half a unit of spin �since there is a single conduction
channel� to give a ground-state spin of S−1/2= �N−1� /2.

A. Schrieffer-Wolff transformation for multiple
impurities

For T
T1
*, the single impurity Anderson model can be

mapped using the Schrieffer-Wolff transformation40 to an
s-d exchange model �the Kondo model� with an energy de-

pendent antiferromagnetic exchange interaction Jk�k. In this
section we show that for multiple impurities a generalized
Schrieffer-Wolff transformation can be performed and that
below T1

*, the N-impurity Anderson model maps to the
N-impurity S=1/2 Kondo model. Furthermore, the exchange
constant is shown to be the same as in the single impurity
case.

Due to the hybridization term Vk, the electrons are hop-
ping on and off the impurities. Since all impurities are
coupled to the same Wannier orbital, it could be expected
that these hopping transitions would somehow “interfere.” It
should be recalled, however, that the dwelling time 
U is
much shorter than the magnetic time scales 
J and 
K. In
other words, spin-flips are realized on a much shorter time
scale compared to the mean time between successive spin-
flips; for this reason, each local moment may be considered
as independent. Note that the impurities do in fact “inter-
fere:” there are O�Vk

4� processes which lead to an effective
ferromagnetic RKKY exchange interaction between pairs of
spins and ultimately to the ferromagnetic ordering of spins at
temperatures below �JRKKY. This will be discussed in the
following section.

The Schrieffer-Wolff transformation is a canonical trans-
formation that eliminates hybridization terms Vk to first order
from the Hamiltonian H, i.e., it requires that40

H̄ 	 eSHe−S �7�

have no terms which are first order in Vk. We expand H̄ in
terms of nested commutators:

H̄ = H + 
S,H� +
1

2

S,
S,H�� + ¯ �8�

and write H=H0+Hc, where H0=Hband+Hdots. We then
choose S to be first order in Vk so that


S,H0� + Hc = 0. �9�

As previously discussed, each impurity can be considered
independent due to the separation of time scales. Therefore
we choose the generator S to be the sum S=�iSi of genera-
tors Si, where the generator Si for each impurity has the
same form as in the single-impurity case:

Si = �
k�	

Vk

�k − �	

ni,−�
	 ck�

† di� − H.c. �10�

with �±=�±U /2 and the projection operators ni,−�
	 are de-

fined by

ni,−�
+ = ni,−�,

ni,−�
− = 1 − ni,−�. �11�

The resulting effective Hamiltonian is then given by

Heff = H0 +
1

2

S,Hc� , �12�

which features O�Vk
2� effective interactions with the leading

terms that can be cast in the form of the Kondo antiferro-
magnetic exchange interaction
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Hex = �
i
��

kk�

Jk�kskk� · Si� , �13�

where Si is the S=1/2 spin operator on impurity i defined by
Si=

1
2�		�di	

† �di	� and the exchange constant Jk�k is given by

Jk�k = Vk�Vk� 1

�k − �� + U/2�
+

1

�k� − �� + U/2�

−
1

�k − �� − U/2�
−

1

�k� − �� − U/2�� . �14�

If we limit the wave vectors to the Fermi surface, i.e., for
k=k�=kF, we obtain

JK 	 2�VkF
�2� 1

�� − U/2�
+

1

�� + U/2�� . �15�

This result is identical to Jk�k obtained for a single impurity.40

As it turns out, the Schrieffer-Wolff transformation, Eqs.
�7�–�12�, produces interimpurity interaction terms in addition
to the expected impurity-band interaction terms. In the
particle-hole symmetric case ��=0�, these additional terms
can be written as

�Heff = 2
�Vk�2

U
��

i=1

N

ni − N�hhop, �16�

where

hhop = �
i
j,�

�di�
† dj� + dj�

† di�� . �17�

Since the on-site charge repulsion favors states with single
occupancy of each impurity, the term in the parenthesis in
Eq. �16� is on the average equal to zero. Furthermore, if each
site is singly occupied, possessing small fluctuations of the
charge �ni

2
− �ni
2�0, hopping between the sites is sup-
pressed and the term hhop represents another small factor. The
Hamiltonian �H is thus clearly not relevant: impurities are
indeed independent.

On departure from the particle-hole symmetric point ��
�0�, �Heff generalizes to

�Heff = 2
U�Vk�2

U2 − 4�2���
i=1

N

ni − N� − 2N
�

U�hhop. �18�

For moderately large � /U this Hamiltonian term still repre-
sents only a small correction to Eq. �13�. However, for strong
departure from the particle-hole �p-h� symmetric point, close
to the valence-fluctuation regime �i.e., �→U /2�, the �Heff
becomes comparable in magnitude to Hex and generates hop-
ping of electrons between the impurities.

The above discussion leads us to the conclusion that just
below T1

* the effective Hamiltonian close to the p-h symmet-
ric point is

Heff = Hband + �
i

�
k�k

Jk�kskk� · Si. �19�

If the dots are described by unequal Hamiltonians Hdot,i or
have unequal hybridizations Vk

i , then the mapping of the

multiple-impurity Anderson model to a multiple-impurity
Kondo model still holds, however, with different effective
exchange constants Jk�k

i .

B. RKKY interaction and ferromagnetic spin ordering

We now show that the effective RKKY exchange interac-
tion between the spins in the effective N-impurity Kondo
model, Eq. �19�, is ferromagnetic and also responsible for
locking of spins in a state of high total spin for temperatures
below T
JRKKY.

The ferromagnetic character of the RKKY interaction is
expected, as shown by the following qualitative argument.
We factor out the spin operators in the effective Hamiltonian
Eq. �19�:

Heff = Hband + ��
k�k

Jk�kskk�� · �
i

Si. �20�

Spins Si are aligned in the ground state since such orientation
minimizes the energy of the system. This follows from con-
sidering a spin chain with N sites in a “static magnetic field”
�k�kJk�kskk�. The assumption of a static magnetic field is valid
due to the separation of relevant time scales, 
K�
J. States
with S
N /2 are clearly excited states with one or several
“misaligned” spins.

Since the interdot spin-spin coupling is a special case of
the Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction in
bulk systems,15 a characteristic functional dependence given
by

JRKKY � U��0JK�2 =
64

�2

�2

U
=

16VkF

4

D2U
�21�

is expected. The factor U in front of ��0JK�2 plays the role of
a high-energy cutoff, much like the 0.182U effective-
bandwidth factor in the expression for TK, Eq. �5�.

Using the Rayleigh-Schrödinger perturbation theory we
calculated the singlet and triplet ground state energies ES and
ET to the fourth order in Vk for the two-impurity case �see
Appendix A�. We define the RKKY exchange parameter by
JRKKY=ES−ET; positive value of JRKKY corresponds to fer-
romagnetic RKKY interaction. For U /D�0.1, the prefactor
of ��0JK�2 in expression �21� is indeed found to be linear in
U. Together with the prefactor the perturbation theory leads
to

JRKKY = 0.62U��0JK�2 for U/D � 1, �22�

which, as we will show later, fits very well our numerical
results. The RKKY interaction becomes fully established for
temperatures below TJ which is roughly one or two orders of
magnitude smaller than T1

* �TJ is defined in Appendix A�.
Since the RKKY interactions in the first approximation do
not depend much on the number of impurities, for N�2 the
exchange interaction between each pair of impurities has the
same strength as in the two impurity case. Therefore, for
temperatures just below TJ, the effective Hamiltonian for the
N-impurity Anderson model becomes
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Heff = Hband + ��
k�k

Jk�kskk�� · �
i

Si − JRKKY�
i
j

Si · S j .

�23�

When the temperature drops below a certain temperature TF
* ,

the spins align and form a ferromagnetically frozen state of
maximum spin S=N /2. The transition temperature TF

* is gen-
erally of the same order as JRKKY, i.e., TF

* =JRKKY/�, where
� is an N-dependent constant of the order one. This relation
holds if TF

* �TJ, otherwise TF
* needs to be determined using a

self-consistency equation �A5�, as discussed in Appendix A.
In conclusion, for T�TF

* the states with total spin less
than N /2 can be neglected, and the system behaves as if it
consisted of a single spin S of magnitude S=N /2. The effec-
tive Hamiltonian at very low temperatures is therefore the
S=N /2 SU�2� Kondo model

Heff = Hband + �
k,k�

Jk�ksk,k� · S , �24�

where S=P��iSi�P and P is the projection operator on the
subspace with total spin S=N /2. Other multiplets are irrel-
evant at temperatures below TF

* . We point out that the Kondo
temperature for this model is given by the formula for the
single impurity Anderson model, Eq. �5�, irrespective of the
number of dots N, since the ferromagnetic interaction only
leads to moment ordering, while the exchange interaction of
the collective spin is still given by the same Jk�k.

It should be mentioned that if the exchange constants Jk�k
i

for different impurities are different, there will be some mix-
ing between the spin multiplets. The simple description of
impurities as a collective S=N /2 spin still holds even for
relatively large differences, but in general the virtual excita-
tions to other spin multiplets must be taken into account.
This is studied in detail for the case of two dots in Sec. VI D.

IV. THE METHODS

A. Numerical renormalization group

The method of choice to study the low-temperature prop-
erties of quantum impurity models is the Wilson’s numerical
renormalization group �NRG�.38,39,41 The NRG technique
consists of logarithmic discretization of the conduction band
described by Hband, mapping onto a one-dimensional chain
with exponentially decreasing hopping constants, and itera-
tive diagonalization of the resulting Hamiltonian. Since all N
impurities couple to the band in the same manner, they all
couple to the same, zeroth site of the chain Hamiltonian:38

HC

D
=

1

2
�1 + �−1� � �

n=0

�

�
�

�−n/2�n
fn,�
† fn+1,� + fn+1,�

† fn,��

+ Hdots + �
i,�

� 2�

�D
�1/2

�f0�
† di� + di�

† f0�� . �25�

Here fn�
† are the chain creation operators and �n are constants

of order 1. In addition to the conventional Wilson’s discreti-
zation scheme,41 we also used Campo and Oliveira’s new
discretization approach using an overcomplete basis of

states42 with �=4, which improved convergence to the con-
tinuum limit. We made use of the “z-trick” with typically six
equally spaced values of the parameter z.43

1. Symmetries

The Hamiltonian �1� has the following symmetries: �a�
U�1�gauge symmetry due to global phase �gauge� invariance.
The corresponding conserved quantity is the total charge �de-
fined with respect to half-filling case�: Q=�i�ni−1�, where
the sum runs over all the impurity as well as the lead sites;
�b� SU�2�spin spin symmetry with generators S
=�i

1
2�		�ai	

† �		�ai	�, where � are the Pauli matrices. Since
operators Q, S2, and Sz commute with H, the invariant sub-
spaces can be classified according to quantum numbers Q, S,
and Sz. Computation of matrix elements can be further sim-
plified using the Wigner-Eckart theorem.38

In the particle-hole symmetric point, i.e., �=0, the Hamil-
tonian has an additional SU�2�iso isospin symmetry.17 We de-
fine isospin operators on impurity site i using

Ii = �
		�

�i,	
† �		��i,	�, �26�

where the Nambu spinor �i
† on the impurity orbitals is de-

fined by

�i
† = � di,↑

†

− di,↓
� . �27�

We also define I+= Ix+ iIy and I−= �I+�†. We then have, for
example, Ii

z= �ni−1� /2=Qi /2 and Ii
+=di↓

† di↑
† . The isospin

symmetry is thus related to the electron pairing. In terms of
the isospin operators the impurity Hamiltonian can be writ-
ten as

Hdot,i = 2�Ii
z + 4U�Ii

z�2 = 2�Ii
z +

4

3
U�Ii�2, �28�

where we took into account that for spin-1 /2 operators �Pauli
matrices� �Ii

z�2=1/3�Ii�2.
On the Wilson chain the isospin is defined similarly but

with a sign alternation in the definition of the Nambu spinors
�n:

�n
† = � fn,↑

†

�− 1�nfn,↓
� . �29�

The total isospin operator is obtained through a sum of Ii
for all orbitals of the problem �impurities and conduction
band�. For �=0, both I2 and Iz commute with H and I and Iz
are additional good quantum numbers. Note that Iz=Q /2,
therefore U�1�gauge is in fact a subgroup of SU�2�iso. Due to
isotropy in isospin space, the Iz dependence can again be
taken into account using the Wignert-Eckart theorem.

Spin and isospin operators commute, 
Si , Ij�=0 for all i , j.
Therefore for �=0 the problem has a SU�2�spin � SU�2�iso

symmetry which, when explicitly taken into account, leads to
a further significant reduction of the numerical task.

In all our NRG calculations we took into account the con-
servation of the charge and the rotational invariance in the
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spin space, i.e., the U�1�gauge � SU�2�spin symmetry which
holds for all perturbed models considered, or the SU�2�spin

� SU�2�isospin symmetry where applicable. The number of
states that we kept in each stage of the NRG iteration de-
pended on the number of the dots N, since the degeneracy
increases exponentially with N: approximately as 4N at the
high-temperature free orbital regime and as 2N in the local-
moment regime. In the most demanding N=4 calculation we
kept up to 12 000 states at each iteration �which corresponds
to �32 000 states taking into account the spin multiplicity of
states�, which gave fully converged results for the magnetic
susceptibility.

For large scale NRG calculations it is worth taking into
account that the calculation of eigenvalues scales as O�n2�
and the calculation of eigenvectors as O�n3�, where n is the
dimension of the matrix being diagonalized. Since eigenvec-
tors of the states that are truncated are not required to recal-
culate various matrices prior to performing a new iteration, a
considerable amount of time can be saved by not calculating
them at all.

2. Calculated quantities

We have computed the following thermodynamic quanti-
ties.

�1� The temperature-dependent impurity contribution to
the magnetic susceptibility �imp�T�

�imp�T� =
�g�B�2

kBT
��Sz

2
 − �Sz
2
0� , �30�

where the subscript 0 refers to the situation when no impu-
rities are present �i.e., H is simply the band Hamiltonian
Hband�, g is the electronic g factor, �B the Bohr magneton,
and kB the Boltzmann’s constant. It should be noted that the
combination T�imp/ �g�B�2 can be considered as an effective
moment of the impurities, �eff.

�2� The temperature-dependent impurity contribution to
the entropy Simp�T�

Simp�T� =
�E − F�

T
−

�E − F�0

T
, �31�

where E= �H
=Tr�He−H/�kBT�� and F=−kBT ln Tr�e−H/kBT�.
From the quantity Simp/kB we can deduce the effective
degrees-of-freedom � of the impurity as Simp/kB� ln �.

�3� Thermodynamic expectation values of various opera-
tors such as the on-site occupancy �ni
, local charge-
fluctuations ���n�2
= �ni

2
− �ni
2, local-spin �Si
2
, and spin-

spin correlations �Si ·S j
.
In the following we drop the subscript imp in �imp, but

one should keep in mind that impurity contribution to the
quantity is always implied. We also set kB=1.

B. Bethe ansatz

The single-channel SU�2� Kondo model can be exactly
solved for an arbitrary spin of the impurity using the Bethe
ansatz �BA� method.44–46 This technique gives exact results
for thermodynamic quantities, such as magnetic susceptibil-

ity, entropy, and heat capacity. It is, however, incapable of
providing spectral and transport properties. For the purpose
of comparing results of the single-channel SU�2� Kondo
model with NRG results of the N-impurity Anderson model,
we have numerically solved the system of coupled integral
equations using a discretization scheme as described, for ex-
ample, in Ref. 46.

C. Scaling analysis

Certain aspects of the Kondo physics can be correctly
captured using the perturbative renormalization group ap-
proach based on the “poor-man’s scaling” technique due to
Anderson.47 A brief account of this method is given in Ap-
pendix B.

V. NUMERICAL RESULTS

We choose the parameters U and � well within the Kondo
regime, U / �����1. The relevant energy scales are then well
separated �TK�TF

* �T1
*� which enables clear identification of

various regimes and facilitates analytical predictions �see
also Sec. III�.

In Fig. 2 we show temperature dependence of magnetic

FIG. 2. �Color online� �a� Temperature-dependent susceptibility
and �b� entropy of the N-dot systems calculated using the NRG. The
symbols in the susceptibility plots were calculated using the ther-
modynamic Bethe ansatz approach for the corresponding S=N /2
SU�2� Kondo models ��: S=1/2, �: S=1, �: S=3/2, and �: S
=2�.
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susceptibility and entropy for N=1, 2, 3, and 4 systems. As
the temperature is reduced, the system goes through the fol-
lowing regimes.

�1� At high temperatures, T�T1
*, the impurities are inde-

pendent and they are in the free orbital regime �FO� �states
�0
, �↑
, �↓
, and �2
 on each impurity are equiprobable�. Each
dot then contributes 1 /8 to �eff=T� / �g�B�2 for a total of
�eff=N /8. The entropy approaches Simp=N ln 4 since all pos-
sible states are equally probable.38

�2� For TF
* 
T
T1

* each dot is in the local-moment re-
gime �LM� �states �↑
 and �↓
 are equiprobable, while the
states �0
 and �2
 are suppressed�. Each dot then contributes
1 /4 to �eff for a total of N /4. The entropy decreases to
Simp=N ln 2.

�3� For TK
T
TF
* and N�1 the dots lock into a high

spin state S=N /2 due to ferromagnetic RKKY coupling be-
tween local moments formed on the impurities. This is the
ferromagnetically frozen regime �FF�26 with �eff=S�S+1� /3
=N /2�N /2+1� /3. The entropy decreases further to Simp

=ln�2S+1�=ln�N+1�.
�4� Finally, for T
TK, the total spin is screened from S

=N /2 to S̃=S−1/2= �N−1� /2 as we enter the partially
quenched, Kondo screened strong-coupling �SC� N-impurity

regime with �eff= S̃�S̃+1� /3= �N−1� /2
�N−1� /2+1� /3. The
remaining S−1/2 spin is a complicated object: a S=N /2
multiplet combination of the impurity spins antiferromag-
netically coupled by a spin-1 /2 cloud of the lead.26 In this
regime, the entropy reaches its minimum value of Simp

=ln�2S̃+1�=ln N.
In Fig. 2, atop the NRG results we additionally plot the

results for the magnetic susceptibility of the S=N /2 SU�2�
Kondo model obtained using an exact thermodynamic Bethe
ansatz method �see Sec. IV B�. For T
TF

* nearly perfect
agreement between the N-impurity Anderson model and the
corresponding S=N /2 SU�2� Kondo model are found over
many orders of magnitude.75 This agreement is used to ex-
tract the Kondo temperature of the multiple-impurity Ander-
son model. The fitting is performed numerically by the
method of least-squares; in this manner very high accuracy
of the extracted Kondo temperature can be achieved. The
results in Table I point out the important result of this work
that the Kondo temperature is nearly independent of N, as
predicted in Sec. III B. In this sense, the locking of spins into
a high-spin state does not, by itself, weaken the Kondo
effect;13,30 however, it does modify the temperature depen-
dence of the thermodynamic and transport properties.48,49

It is instructive to follow transitions from the high-
temperature FO regime to the LM and FF regimes through a

plot combining the temperature dependence of the magnetic
susceptibility and of other thermodynamic quantities, as pre-
sented in Fig. 3. Charge fluctuations ���n�2
 show a sudden
drop at T�T1

* representing the FO-LM transition. In con-
trast, the magnitude of the total spin S increases in steps: S
=1/2, ��7−1� /2, and 1. Values of S in these plateaus are the
characteristic values of a doubly occupied double-quantum
dot system in the FO, LM, and FF regimes, respectively.

The LM-FF transition temperature TF
* can be deduced

from the temperature dependence of the spin-spin correlation
function. In the FF regime the spins tend to align, which
leads to �S1 ·S2
→ �1/4 as T→0, see Fig. 3. The transition
from 0 to 1/4 is realized at T�TF

* . We can extract TF
* using

the �somewhat arbitrary� condition

�S1 · S2
�TF
*� = 1/2�S1 · S2
�T → 0� . �32�

In Sec. VI B 1 we show that this condition is in very good
agreement with TF

* =JRKKY/� obtained by determining the
explicit interimpurity antiferromagnetic coupling constant
J12, defined by the relation JRKKY+J12=0 that destabilizes
the high-spin S=N /2 state. The extracted TF

* transition tem-
peratures that correspond to plots in Fig. 2 are given in Table
I. We find that they weakly depend on the number of impu-
rities, more so than the Kondo temperature. The increase of
TF

* with N can be partially explained by calculating TF
* for a

spin Hamiltonian H=−JRKKY�i
jSi ·S j for N spins decoupled
from leads. Using Eq. �32� we obtain TF

* �1.18 JRKKY for
N=2, TF

* �1.36 JRKKY for N=3, and TF
* �1.55 JRKKY for N

=4.
By performing NRG calculations of TF

* for other param-
eters U and � and comparing them to the prediction of the
perturbation theory, we found that the simple formula �22�
for JRKKY agrees very well with numerical results.

The effect on thermodynamic properties of varying U
while keeping � /U �i.e., �0JK� fixed is illustrated in Fig. 4
for 2- and 3-dot systems. Parameters � and U enter expres-
sions for TF

* =JRKKY/� and TK only through the ratio � /U,
apart from the change of the effective bandwidth propor-
tional to U, see Eqs. �5� and �22�. This explains the horizon-

TABLE I. Kondo temperatures for different numbers of quan-
tum dots N corresponding to plots in Fig. 2.

N Kondo temperature TK /D LM-FO temperature TF
* /D

1 1.20�10−12

2 1.23�10−12 1.87�10−5

3 1.29�10−12 2.11�10−5

4 1.32�10−12 2.32�10−5

FIG. 3. �Color online� Temperature-dependence of susceptibil-
ity, charge fluctuations ���n�2
, total spin S, and the spin-spin cor-
relations �S1 ·S2
 of the 2-dot system.
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tal shift towards higher temperatures of susceptibility curves
with increasing U, as seen in Fig. 4�a�. The NRG results and
the Bethe Ansatz for the Kondo models with S=1 and S
=3/2 show excellent agreement for T
TF

* . In Figs. 4�b� and
4�c� we demonstrate the nearly linear U-dependence of TF

*

and TK, respectively.
In Fig. 5 we show the effect of varying � /U while keep-

ing U fixed. In this case, T1
* stays the same, TF

* is shifted
quadratically, and TK exponentially with increasing � /U.
Figure 5�b� shows the agreement of TF

* with expression �22�,
while Fig. 5�c� shows the agreement of the extracted values
of TK with formula �5�.

We note that for N�2, eventual coupling to an additional
conduction channel �for example, due to a small asymmetry
in the coupling to the source and drain electrodes� would
lead to screening by additional half a unit of spin26,27 and the
residual ground state spin would be S−1=N /2−1. For N
�3 and three channels �due to weak coupling to some third
electrode�, three half-units of spin would be screened, and so
forth. These additional stages of Kondo screening would,
however, occur at much lower temperatures; all our findings
still apply at temperatures above subsequent Kondo cross-
overs.

In systems of multiple quantum dots, an additional
screening mechanism is possible when after the first Kondo
crossover, the residual interaction between the remaining
spin and the Fermi liquid quasiparticles is anti-
ferromagnetic.50 This leads to an additional Kondo crossover
at temperatures that are exponentially smaller than the first
Kondo temperature. Such two-stage Kondo effect occurs, for
example, in side-coupled double quantum dots50–53 and triple
quantum dot coupled in series.54 In parallelly coupled sys-

tems, the residual interaction between the remaining spin and
the Fermi liquid quasiparticles is, however, ferromagnetic as
can be deduced from the splitting of the NRG energy levels
in the strong-coupling fixed point:49 the strong-coupling
fixed point is stable.

We have thus demonstrated that with decreasing tempera-
ture the symmetric ��=0� multiple-impurity Anderson model
flows from the FO regime, through LM and FF regimes, to a
stable underscreened S=N /2 Kondo model strong-coupling
fixed point. The summary of different regimes is given in
Table II.

VI. STABILITY OF N=2 SYSTEMS WITH RESPECT TO
VARIOUS PERTURBATIONS

We next explore the effect of various physically relevant
perturbations with a special emphasis on the robustness of
the ferromagnetically frozen state and the ensuing S=N /2
Kondo effect against perturbation of increasing strength. We
show that the system of multiple quantum dots remains in a
S=N /2 state even for relatively large perturbations. We also
study the quantum phase transitions from the S=N /2 state
driven by strong perturbations. In this section we limit our
calculations to the N=2 system.

Unless otherwise noted, the parameters are still chosen
well within the Kondo regime, U / �����1. We will show
that the scale separation, as discussed in Sec. III, still holds
for weak perturbations. It will also become evident that the
quantum phase transitions are triggered precisely by the
competition between various effects �such as magnetic order-

FIG. 4. �Color online� �a� Temperature-dependent susceptibility
of the 2- and 3-dot systems with the same � /U ratio. Open �closed�
symbols are Bethe ansatz results for the S=1 �S=3/2� Kondo
model. �b� Comparison of LM-FF transition temperature TF

* with
predictions of the perturbation theory. �c� Comparison of calculated
TK with Haldane’s formula.

FIG. 5. �Color online� �a� Temperature-dependent susceptibility
of the 2-dot system for equal e-e repulsion U /D=0.01 and for
different hybridization strengths �. Symbols represent the Bethe
ansatz susceptibility for the S=1 Kondo model with corresponding
TK. �b� Comparison of calculated and predicted TF

* . �c� Fit of TK to
Haldane’s formula, Eq. �5�.
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ing and Kondo screening� when any two energy scales be-
come comparable.

A. Variation of the on-site energy levels

1. Deviation from the particle-hole symmetric point

A small departure from the particle-hole symmetric point
���0� does not destabilize the S=N /2 Kondo behavior: the
magnetic susceptibility curves still follow the Bethe ansatz
results even for � /U as large as 0.4, see Fig. 6�a�. For �
��c, where �c /D�0.45 is the critical value of parameter �,
the triplet state is destabilized. Consequently, there is no
Kondo effect. This is a particular case of the singlet-triplet
transition that is a subject of intense studies in recent years,
both experimentally55–57 and theoretically.36,53,58–60

In the asymmetric single impurity model, the valence-
fluctuation �VF� regime is characterized by �eff
=T��T� / �g�B�2�1/6.39 The VF regimes occur at T1

* and the
transition from the VF to LM regime occurs at T2

*��Ed
*� /	,

where Ed
* is the renormalized on-site energy of the impurity:

Ed
*=�d− �

� ln�−U /Ed
*�. For two uncorrelated dots in the VF

regime, we expect �eff�1/3. In Fig. 6�a� we plotted a num-
ber of susceptibility curves for parameters � in the proximity
of the singlet-triplet transition. While there is no clearly ob-
servable valence-fluctuation plateau, the value of �eff is in-
deed near 1 /3 between T1

* and T2
*��c�.

In Fig. 6�b� we compare calculated Kondo temperatures
with analytical predictions based on the results for the single
impurity model.39 For ��0, JK generalizes according to the
Schrieffer-Wolff transformation, Eq. �15�. Departure from
the p-h symmetric point also induces potential scattering

�0K =
�

2�
� 1

�� − U/2�
−

1

�� + U/2�� . �33�

The effective J̃K that enters the expression for the Kondo
temperature is39

J̃K = JK
1 + ���0K�2� , �34�

and the effective bandwidth 0.182U is replaced by 0.182�Ed
*�.

The Kondo temperature is now given by

TK = 0.182�Ed
*���0J̃K exp
− 1/��0J̃K�� . �35�

This analytical estimate agrees perfectly with the NRG re-
sults: for moderate � /U, the results obtained for the asym-
metric single impurity model also apply to the multiple-
impurity Anderson model.

In Fig. 6�c� we show the �-dependence of the LM-FF
transition temperature TF

* . Its value remains nearly indepen-
dent of � in the interval ��0.4U and then it suddenly drops.
More quantitatively, the dependence on � can be adequately
described using an exponential function

TF
*��� = TF

*�0��1 − exp�� − �c

�
�� , �36�

where TF
*�0� /D=1.8�10−5 is the transition temperature in

the symmetric case, �c /D=0.45 is the critical �, and � /D
=2.1�10−2 is the width of the transition region. Exchange
interaction JRKKY does not depend on � for U /D=0.01�1,
which explains the constant value of TF

*��� for ��0.4U. At a
critical value �c, TF

* goes to zero and for still higher � the
spin-spin correlation becomes antiferromagnetic. Since the
ground-state spins are different, the triplet and singlet re-
gimes are separated by a quantum phase transition at �=�c.
This transition is induced by charge fluctuations which de-
stroy the ferromagnetic order of spins as the system enters

TABLE II. Regimes of the symmetric ��=0� N-impurity Anderson model.

Regime Relevant states
Magnetic susceptibility
�eff=T�imp�T� / �g�B�2

Spin correlations
�S1 ·S2


Charge fluctuations
�n2
− �n
2

Entropy
Simp

FO N� ��0
 , �↑ 
 , �↓ 
 , �2
� N /8 0 O�1� N ln 4

LM N� ��↑ 
 , �↓ 
� N /4 0 small N ln 2

FF �S=N /2 ,Sz
 N /2�N /2+1� /3 �1/4 small ln�N+1�
SC �S=N /2−1/2 ,Sz
 �N−1� /2�N /2+1/2� /3 �1/4 small ln N

FIG. 6. �Color online� �a� Temperature-dependent susceptibility
of the 2-dot systems on departure ���0� from the particle-hole
symmetric point, �=0. Symbols are fits to the universal susceptibil-
ity obtained using the Bethe ansatz method for the S=1 Kondo
model. �b� Calculated and predicted Kondo temperature, Eq. �35�.
For comparison we also plot TK given by Eq. �5�, which shows
expected discrepancy for large � /U. �c� Calculated TF

* and the fit to
an exponential function.
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the VF regime. The exponential dependence arises from the
grand-canonical statistical weight factor exp
��n−2� / �kBT��,
where n is the number of the electrons confined on the dots.
The transition is of the first order, since for equal coupling of
both impurities to the band there is no mixing between the
n=2 triplet states and the n=0 singlet state.50

For � slightly lower than the critical �c, the effective mo-
ment T��T� shows a rather unusual temperature dependence.
It first starts decreasing due to charge fluctuations, however,
with further lowering of the temperature the moment order-
ing wins over, T��T� increases, and at low-temperatures ap-
proaches the value characteristic for the partially screened
S=1 moment, i.e., T� / �g�B�2�1/4.

2. Splitting of the on-site energy levels

We next consider the 2-dot Hamiltonian with unequal on-
site energies �i:

Hdot,i = �i�ni − 1� +
U

2
�ni − 1�2. �37�

We focus on the case �1=� and �2=−�, which represents
another experimentally relevant perturbation. This model is
namely particle-hole symmetric for an arbitrary choice of �
under a generalized p-h transformation ck�

† →ck,−�, d1�
†

→d2,−�, d2�
† →d1,−�. The total occupancy of both dots is ex-

actly 2 for any �. We can therefore study the effect of the
on-site energy splitting while maintaining the particle-hole
symmetry. Susceptibility curves are shown in Fig. 7�a� for
a range of values of �. For � up to some critical value

�c�0.47 the 2-dot Anderson model remains equivalent to
the S=1 Kondo model for T
TF

* . A singlet-triplet transition
of the Kosterlitz-Thouless type50,53 occurs at �=�c.

Even though the two dots are now inequivalent, the
Schrieffer-Wolff transformation yields the same JK for both
spin impurities. We obtain

JK = 2�VkF
�2� 1

�� − U/2�
+

1

�� + U/2�� . �38�

Due to the particle-hole symmetry no potential scattering is
generated. The effective Kondo Hamiltonian for small � is
thus nearly the same as that for small � discussed in the
previous section. In Fig. 7�b� calculated Kondo temperatures
are plotted in comparison with analytical result from Eqs. �5�
and �38�. The agreement is excellent.

The properties of the systems with ��0 and ��0 be-
come markedly different near respective singlet-triplet tran-
sition points. For ��0, the transition is induced by charge
fluctuations which suppress magnetic ordering and, due to
equal coupling of both dots to the band, the transition is of
first order. For ��0 the transition is induced by depopulat-
ing dot 2 and populating dot 1 while the total charge on the
dots is maintained, which leads to the transition from an
interimpurity triplet to a local spin-singlet on the dot 1. Since
there is an asymmetry between the dots, the transition is of
the Kosterlitz-Thouless type.50

The Kondo temperature of the S=1/2 Kondo screening
near the transition on the singlet side, T*, is approximately
given by

log T*/D = − 	 − � exp�−
� − �̃

�
� . �39�

We obtain 	�7, ��2.8, �̃ /D�0.477, and � /D�1.5
�10−3. This expression is consistent with the crossover scale
formula T*�exp
−TK /J12� for a system of two fictitious
spins, one directly coupled to the conduction band and the
other side-coupled to the first one with exchange-interaction
J12 that depends exponentially on �: J12=TK /� exp
��
− �̃� /��.

B. Interimpurity interaction

1. Interimpurity exchange interaction

In this section we show that by introducing an explicit
exchange interaction J12 between the localized spins on the
dots, the strength of the RKKY interaction, JRKKY, can be
directly determined. We thus study the two-impurity Ander-
son model with

Hdots = �
i=1

2

Hdot,i + J12S1 · S2,

where J12�0.
As seen from Fig. 8, for J12 above a critical value Jc, the

RKKY interaction is compensated, local moments on the
dots form the singlet rather than the triplet which in turn
prevents formation of the S=1 Kondo effect. The phase tran-

FIG. 7. �Color online� �a� Temperature-dependent susceptibility
of the 2-dot system with unequal �detuned� on-site energies, �1

=�, �2=−�. Full symbols present Bethe ansatz results of the
equivalent S=1 Kondo model, while empty symbols are BA results
of a S=1/2 Kondo model. �b� Comparison of calculated and pre-
dicted Kondo temperature, see Eqs. �5� and �38�. �c� The Kondo
temperature of the S=1/2 Kondo screening on the singlet side of
the transition and a fit to Eq. �39�.
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sition is of the first order.50 Using Eq. �32�, we obtain
TF

* /D�1.87�10−5 for the nonperturbed problem with the
same U and �, while Jc /D�1.68�10−5. Taking into account
the definition TF

* =JRKKY/�, where ��1, we conclude that
JRKKY agrees well with the critical value of Jc, i.e., Jc
=JRKKY. The perturbation theory prediction of JRKKY/D
=1.6�10−5 also agrees favorably with numerical results.

As long as J12
Jc, even for J12�TK, the S=1 Kondo
effect survives and, moreover, the Kondo temperature re-
mains unchanged, determined only by the value of �0JK as in
the J12=0 case. The only effect of increasing J12 in the re-
gime where J12
Jc is the reduction of the transition tem-
perature into the triplet state, which is now given by TF

*

�Jeff /� with the effective interimpurity interaction Jeff
=JRKKY−J12.

2. Hopping between the impurities

We now study the two-impurity Anderson model with ad-
ditional hopping between the dots:

Hdots = �
i=1

2

Hdot,i − t12�
�

�d1�
† d2� + d2�

† d1�� . �40�

This model can be viewed also as a single-channel version of
the Alexander-Anderson model61 in the limit of zero separa-
tion between the impurities. The magnetic-susceptibility
curves are shown in Fig. 9.

The hopping leads to hybridization between the atomic
levels of the dots which in turn results in the formation of an
even and odd level �“molecular orbital”� with energies �e,o
=�d± t12. In the presence of interaction U there are two con-
tributions to the energy of the low-lying states: “orbital en-
ergy” proportional to t12 and “magnetic energy” due to an
effective antiferromagnetic exchange JAFM=4t12

2 /U, which is
second order in t12. Even though the orbital energy is the
larger energy scale, the Kondo effect is largely insensitive to
the resulting level splitting. Instead, the Kondo effect is de-
stroyed when JAFM exceeds JRKKY, much like in the case of
explicit exchange interaction between the dots which was

discussed in the previous section. We should emphasize the
similarity between the curves in Figs. 8 and 9.

In the wideband limit U�D, JRKKY/D�0.62
�64/�2�2 /U, therefore the critical t12,c is given by t12,c
�� and it does not depend on U. This provides an alterna-
tive interpretation for the U-dependence of t12,c in the strong-
coupling regime found in Ref. 62.

C. Isospin-invariance breaking perturbations

The interimpurity electron repulsion and the two-electron
hopping between the impurities represent perturbations that
break the isospin SU�2� symmetry of the original model,
while they preserve both the particle-hole symmetry as well
as the spin invariance.

1. Interimpurity electron repulsion

The effect of the interimpurity electron repulsion �induced
by capacitive coupling between the two parallel quantum
dots� is studied using the Hamiltonian

Hdots = �
i=1

2

Hdot,i + U12�n1 − 1��n2 − 1� , �41�

where it should be noted that �n1−1��n2−1�=4I1
z I2

z is the
longitudinal part of the isospin-isospin exchange interaction
I1 ·I2. This perturbation breaks the SU�2�iso symmetry to
U�1�gauge�Z2 symmetry, where U�1�gauge corresponds to ro-
tations around the isospin z-axis �Iz, i.e., charge, is still a
good quantum number� and Z2 corresponds to permutations
of isospin x and y axis.

Results in Fig. 10 show that the interimpurity repulsion is
not an important perturbation as long as U12
U. Finite U12
only modifies the Kondo temperature and the temperature T1

*

of the FO-LM transition, while the behavior of the system
remains qualitatively unchanged. Note that TF

* is unchanged
since U12 equally affects both the singlet and the triplet en-
ergy.

FIG. 8. �Color online� Temperature-dependent susceptibility of
the 2-dot systems for different antiferromagnetic interimpurity cou-
plings J12. Circles are Bethe ansatz results for the susceptibility of
the S=1 Kondo model with the Kondo temperature which is equal
for all cases where J12
Jc.

FIG. 9. �Color online� Temperature-dependent susceptibility of
the 2-dot systems with interdot tunneling coupling t12. For t12/D
�2�10−4, we have JAFM/D�1.6�10−5, which agrees well with
the critical value of Jc /D�1.7�10−5 found in the case of an ex-
plicit exchange interaction between the dots, see Fig. 8.
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For U12�U the electrons can lower their energy by form-
ing on-site singlets and the system enters the charge-
ordering regime.63 This behavior bares some resemblance to
that of the negative-U Anderson model64 which undergoes a
charge Kondo effect.

The system behaves in a peculiar way at the transition
point U12=U where U12 and U terms can be combined using
isospin operators as

U/2
4�I1
z�2 + 4�I2

z�2� + U124I1
z I2

z = 2U�Iz�2. �42�

We now have an intermediate temperature fixed point with a
sixfold symmetry of states with Iz=0 as can be deduced from
Eq. �42� and the entropy curve in Fig. 11.

While the SU�2�iso isospin symmetry is broken for any
U12�0 to U�1�gauge�Z2, a new orbital SU�2�orb pseudospin
�approximate� symmetry appears at the special point U12
=U. For two impurities we can define an orbital pseudospin
operator as

O =
1

2�
	

�
i,j=1,2

di	
† �ijdj	, �43�

where � is the vector of the Pauli matrices. Note that the
orbital pseudospin and isospin operators do not all commute,
therefore the full orbital pseudospin and isospin SU�2� sym-
metries are mutually exclusive. The quantum dots Hamil-
tonian Hdots commutes for U12=U with all three components
of the orbital pseudospin operator; the decoupled impurities
thus have orbital SU�2�orb symmetry. Furthermore, pseu-
dospin O and spin S operators commute and the symmetry is
larger, SU�2�spin � SU�2�orb. In fact, the set of three Si, three
Oi, and nine operators SiOj are the generators of the SU�4�
symmetry group of which SU�2�spin � SU�2�orb is a subgroup.
The six degenerate states are the spin triplet, orbital singlet
and the spin singlet, orbital triplet65 which form a SU�4�
sextet:

�S = 1,Sz = 1,O = 0
 = �↑,↑
 ,

�S = 1,Sz = 0,O = 0
 = 1/�2��↑,↓
 + �↓,↑
� ,

�S = 1,Sz = − 1,O = 0
 = �↓,↓
 ,

�S = 0,O = 1,Oz = 1
 = �↑↓,0
 ,

�S = 0,O = 1,Oz = 0
 = 1/�2��↑,↓
 − �↓,↑
� ,

�S = 0,O = 1,Oz = − 1
 = �0,↑↓
 .

It should be noted that the orbital pseudospin eigenstates �S
=0,O=1,Oz= ±1
 can be combined into an isospin triplet
eigenstate �S=0, I=1, Iz=0
=1/�2��↑ ↓ ,0
+ �0, ↑ ↓ 
� and an
isospin singlet eigenstate �S=0, I=0
=1/�2��↑ ↓ ,0

− �0, ↑ ↓ 
�. This recombination is possible because Iz

U�1�gauge charge operator� commutes with both the Hamil-
tonian 
see Eq. �42�� and the orbital pseudospin operators.

The coupling of impurities to the leads, however, breaks
the orbital symmetry. Unlike the model studied in Ref. 63,
our total Hamiltonian H is not explicitly SU�4� symmetric,
and unlike in the model studied in Ref. 66, in our system this
symmetry is not dynamically �re�established on the scale of
the Kondo temperature. No SU�4� Kondo effect is therefore
expected. Instead, as the temperature decreases the degen-
eracy first drops from 6 to 4 and then from 4 to 2 in a S
=1/2 SU�2� Kondo effect �see the fit to the Bethe ansatz
result in Fig. 10�. There is a residual twofold degeneracy in
the ground state. To understand these results, we applied per-
turbation theory �Appendix A� which shows that the sextu-
plet splits in the fourth order perturbation in Vk. The spin-
triplet states and the state �S=0, I=0
 form the new fourfold
degenerate low-energy subset of states, while the states �S
=0, I=1, Iz=0
 and �S=0,O=1,Oz=0
 have higher energy.
The remaining four states can be expressed in terms of even
and odd molecular-orbitals described by operators de�

†

=1/�2�d1�
† +d2�

† � and do�
† =1/�2�d1�

† −d2�
† �. We obtain

�S = 1,Sz = 1,O = 0
 = de,↑
† do,↑

† �0
 ,

FIG. 10. �Color online� Temperature-dependent susceptibility of
the 2-dot systems for different interimpurity electron-electron repul-
sion parameters U12. Circles are the Bethe ansatz results for the S
=1/2 Kondo model which fit the NRG results in the special case
U12=U.

FIG. 11. �Color online� Temperature-dependent entropy of the
2-dot systems for different interimpurity electron-electron repulsion
U12.
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�S = 1,Sz = 0,O = 0
 = 1/�2�do,↑
† de,↓

† + de,↑
† do,↓

† ��0
 ,

�S = 1,Sz = − 1,O = 0
 = de,↓
† do,↓

† �0
 ,

�S = 0,I = 0
 = 1/�2�do,↑
† de,↓

† − de,↑
† do,↓

† ��0
 . �44�

The four remaining states are therefore a product of a spin-
doublet in the even orbital and a spin-doublet in the odd
orbital. Due to the symmetry of our problem, only the even
orbital couples to the leads, while the odd orbital is entirely
decoupled. The electron in the even orbital undergoes S
=1/2 Kondo screening, while the unscreened electron in the
odd orbital is responsible for the residual twofold degen-
eracy.

2. Two-electron hopping

We consider the Hamiltonian

Hdots = �
i=1

2

Hdot,i − T12T̂ , �45�

where T̂ is the two-electron hopping operator that can be
expressed in terms of the transverse part of the isospin-
isospin exchange interaction I1 ·I2:

T̂ = d1↑
† d1↓

† d2↓d2↑ + d2↑
† d2↓

† d1↓d1↑ = I1
+I2

− + I1
−I2

+ = 2�I1
xI2

x + I1
yI2

y� .

�46�

This perturbation term is complementary to the one gener-
ated by U12 in Eq. �42� and studied in the previous section.
Physically, it corresponds to correlated tunneling of electron
pairs which can be neglected in the applications to problems
of transport through parallel quantum dots coupled electro-
statically as physically realized in semiconductor hetero-
structures. Models featuring pair-tunneling terms as in Eq.
�46� may, however, be of interest to problems in tunneling
through molecules with vibrational degrees of freedom,
where ground states with an even number of electrons can be
favored due to a polaronic energy shift.67,68 In such cases, the
charge transport is expected to be dominated by the electron-
pair tunneling.68

The temperature dependence of the magnetic susceptibil-
ity shown in Fig. 12 again demonstrates the robustness of the
S=1 state for �T12�
U. The behavior of the system for nega-
tive T12 is similar to the case of the interimpurity repulsion.
For T12=−U we again observe special behavior of the sus-
ceptibility curve, characteristic for the sixfold degeneracy
observed in the previous section at U12=U. For positive T12
the system undergoes the S=1 spin Kondo effect up to and
including T12=U. The FO-LM transition temperature T1

* and
the Kondo temperature are largely T12 independent, while the
LM-FF transition temperature TF

* decreases with increasing
T12.

D. Unequal coupling to the continuum

We finally study the Hamiltonian that allows for unequal
hybridizations �i=��0�VkF

i �2 in the following form:

H = Hband + Hdots + �
i=1

2

Hc,i, �47�

with

Hc,i =
1
�L

�
k�

�Vk
i di�

† ck� + H.c.� . �48�

We set Vk
2=	Vk

1, i.e., �2=	2�1.
The effective low-temperature Hamiltonian can be now

written as

Heff = Hband + s · �
i=1

2

JK,iSi − JRKKY
eff S1 · S2, �49�

with JK,2=	2JK,1 and with the effective RKKY exchange in-
teraction given by a generalization of Eq. �21�

JRKKY
eff = 0.62U�0

2JK,1JK,2 = 	2JRKKY, �50�

where JRKKY is the value of the RKKY parameter at 	=1. In
our attempt to derive the effective Hamiltonian we assume
that in the temperature regime T�JRKKY

eff the two moments
couple into a triplet. Since the two Kondo exchange con-
stants JK,i are now different, we rewrite Heff in Eq. �49� in the
following form:

Heff = Hband + s · � JK,1 + JK,2

2
�S1 + S2��

+ s · � JK,1 − JK,2

2
�S1 − S2�� − JRKKY

eff S1 · S2. �51�

Within the triplet subspace, S1+S2 is equal to the new
composite spin 1, which we denote by S, S1−S2 is identi-
cally equal to zero, and S1 ·S2 is a constant −1/4. As a result,
the effective JK is simply the average of the two exchange
constants:

JK,eff =
JK,1 + JK,2

2
. �52�

Susceptibility curves for different 	 are shown in Fig. 13.
Note that the Kondo temperature determined using Eq. �5�

FIG. 12. �Color online� Temperature-dependent susceptibility of
the 2-dot system with two-electron hopping between the dots T12.
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combined with the naive argument given in Eq. �52� fails to
describe the actual Kondo scale for 	�0.4 as seen from Fig.
14. This is due to admixture of the singlet state, which also
renormalizes JK, even though the singlet is separated by
JRKKY

eff �TK from the triplet subspace. Note, however, that
JRKKY

eff is well-described by the simple expression given in
Eq. �50� as shown in Fig. 14. By performing a second-order
RG calculation �see Appendix B�, which takes the admixture
of the singlet state into account, we obtain TK as a function
of 	 which agrees very well with the NRG results, see Fig.
14.

For extremely small 	, JRKKY
eff eventually becomes com-

parable to the Kondo temperature, see Fig. 14. For that rea-
son the ferromagnetic locking-in is destroyed and the system
behaves as a double S=1/2 doublet, one of which is
screened at TK

1 =TK�JK,1� as shown in Fig. 13�b�.

VII. CONCLUSIONS

We have shown that several magnetic impurities, coupled
to the same Wannier orbital of a conduction electron band,
experience ferromagnetic RKKY interaction which locks

local moments in a state of a maximal total spin. The
multiple-impurity Anderson model is at low temperatures,
i.e., for T
TF

* , equivalent to a S=N /2 SU�2� Kondo model.
Using perturbation theory up to the fourth order in V we
derived an analytical expression for JRKKY and tested it
against NRG calculations. We have also shown that the high-
spin state is very robust against experimentally relevant per-
turbations such as particle-hole symmetry breaking, on-site
energy level splitting, interimpurity capacitive coupling, and
direct exchange interaction. At low temperatures, the ferro-
magnetically locked impurities undergo a collective Kondo
crossover in which half of a unit of spin is screened. The
Kondo temperature in this simple model does not depend on
the total spin �i.e., on the number of impurities N�, while the
LM-FF temperature TF

* is weakly N-dependent.
We next list a few of the most important findings concern-

ing the effect of various perturbations to the original two-dot
system. �a� TF

* is in the range ��0.4U nearly independent of
the deviation from the particle-hole symmetric point �=0.
�b� Increasing the difference between on-site energies of two
dots, 2�, induces a Kosterlitz-Thouless type phase transition
separating the phase with S=1/2 residual spin at low tem-
peratures from the S=0 one. �c� Introduction of additional
one-electron hopping between the impurities induces effec-
tive AFM interaction JAFM=4t12

2 /U that does not affect the
Kondo temperature as long as JAFM�JRKKY, nevertheless, at
t12= t12,c it destabilizes the S=1 state. The critical value
t12,c�� does not depend on U. �d� Interimpurity Coulomb
interaction U12 leads to a transition from the S=1 Kondo
state to the charge ordered state. In the four-fold degenerate
intermediate point, reached at U12=U, the effective Hamil-
tonian consists of the effective S=1/2 Kondo model and of a
free, decoupled S=1/2 spin. �e� When the two impurities are
coupled to the leads with different hybridization strengths,
second-order scaling equations provide a good description of
the Kondo temperature.

The properties of our model apply very generally, since
high-spin states can arise whenever the RKKY interaction is
ferromagnetic, even when the dots are separated in
space.34,69 In addition, it has become possible to study Kondo
physics in clusters of magnetic atoms on metallic
surfaces.8,70 On �111� facets of noble metals such as copper,
bulk electrons coexist with Shockley surface-state
electrons.71 Surface-state bands on these surfaces have

FIG. 13. �Color online� Temperature-dependent susceptibility of
the 2-dot system with unequal coupling to the leads, �2=	2�1. �a�
The range of 	 where TK is decreasing. �b� The range of 	 where
TK is increasing again. Circles �squares� are BA results for the S
=1 �S=1/2� Kondo model. The arrows indicate the evolution of the
susceptibility curves as the parameter 	 decreases.

FIG. 14. �Color online� Comparison of calculated and predicted
Kondo temperature TK and effective exchange interaction JRKKY

eff .
The calculation of scaling results for TK is described in Appendix B.
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kF�0.1–0.2 Å−1; thus for nearest and next-nearest neighbor
adatoms kFR�1. If hybridization to the surface band is
dominant, small clusters then effectively couple to the same
Wannier orbital of the surface band and the single-channel
multiple-impurity Anderson model is applicable; in the ab-
sence of additional interimpurity interactions, the spins
would then tend to order ferromagnetically. If hybridization
to the bulk band with kF

3D�1 Å−1 is also important, the prob-
lem must be described using a complex two-band multichan-
nel Hamiltonian.

Another relevant application of multiple-impurity models
is to magnetic atoms confined to quantum corrals. Calcula-
tions of interimpurity interaction between two magnetic at-
oms located at the foci of an elliptical quantum corral indi-
cate that the quantum corral eigenmode mediated exchange
interaction is ferromagnetic.72,73

Further aspects of the multiple-impurity Anderson model
should be addressed in future work. Systems of coupled
quantum dots and magnetic impurities on surfaces are
mainly characterized by measuring their transport properties.
Conductance can be determined by calculating the spectral
density functions using the numerical renormalization group
method. We anticipate that the fully screened N=1 model
will have different temperature dependence as the under-
screened N�2 models. Since in quantum dots the impurity
level � �or �d� can be controlled using gate voltages, it should
be interesting to extend the study to asymmetric multiple-
impurity models for N�2 where more quantum phase tran-
sitions are expected in addition to the one already identified
for N=2 at �=�c.
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APPENDIX A: RAYLEIGH-SCHROEDINGER
PERTURBATION THEORY IN Vk

Following Ref. 74, we apply Rayleigh-Schrödinger per-
turbation theory to calculate second and fourth order correc-
tions in Vk to the energy of a state �n
:

En
�2� = ��

m

�n�Hc�m
�m�Hc�n

En − Em

,

En
�4� = ��

m1,m2,m3

�n�Hc�m3
�m3�Hc�m2
�m2�Hc�m1
�m1�Hc�n

�En − Em3

��En − Em2
��En − Em1

�
.

�A1�

The summation extends over all intermediate states �mi
 not
equal to one of the degenerate ground states. We will con-
sider the simplified case of constant Vk, i.e., Vk=VkF

=V.

1. RKKY interaction in the two-impurity case

We study the splitting between the singlet �S

=1/�2��↑ , ↓ 
− �↓ , ↑ 
� and the triplet state �T
=1/�2��↑ , ↓ 

+ �↓ , ↑ 
�. The second order corrections are ES

�2�=ET
�2�=−�S1

+S2� with

S1 = 4V2 1

L
�

k��kF

1

U − 2� + 2�k�
,

S2 = 4V2 1

L
�

k�kF

1

U + 2� − 2�k
. �A2�

There is therefore no splitting to this order in V. The fourth
order corrections are

ES
�4� = WS

ph + WS
pp + WS

hh,

ET
�4� = WT

ph, �A3�

where the particle-hole �ph�, particle-particle �pp�, and hole-
hole �hh� intermediate-state contributions are

FIG. 15. �Color online� The prefactor c in the RKKY exchange
constant JRKKY=c16V4 / �D2U� for a flatband with �0=1/ �2D� as a
function of U for a range of values of the impurity energy level �.

FIG. 16. �Color online� Ratio ��E�=JRKKY�E� /JRKKY
0 of the run-

ning RKKY coupling constant at energy E over its value in the E
→0 limit. The dashed line is an approximate fit to a simple rational
function ��E�=1/ �1+xE /U�.
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WS
ph =

16V4

U

1

L2 �
k�kF,k��kF

8�� − �k��� − �k���U + �k − �k��

�U − 2� + 2�k�2�U + 2� − 2�k��
2��k − �k��

,

WT
ph = 32V4 1

L2 �
k�kF,k��kF

2U2 + 5U��k − �k�� + 4
�2 + �k
2 + �k�

2 − �k�k� − ���k + �k���

�U − 2� + 2�k�2�U + 2� − 2�k��
2��k − �k��

,

WS
pp =

16V4

U

1

L2 �
k1��kF,k2��kF

2�U − 2���3U − 2�� + 8�U − ����k1�
+ �k2�

� + 8�k1�
�k2�

�U − 2� + 2�k1�
�2�U − 2� + 2�k2�

�2 , �A4�

WS
hh =

16V4

U

1

L2 �
k1�kF,k2�kF

2�U + 2���3U + 2�� − 8�U + ����k1
+ �k2

� + 8�k1
�k2

�U + 2� − 2�k1
�2�U + 2� − 2�k2

�2 .

From these expressions we obtain JRKKY=ES−ET. In or-
der to evaluate the sums for a flatband with a constant den-
sity of states �0=1/ �2D� and the chemical potential �=0, we
make formal replacements 1

L�k��kF
= 1

L�k��0→�0�0
1dk� and

1
L�k�kF

= 1
L�k
=0→�0�−1

0 dk. In Fig. 15 we plot the prefactor
c in the expression for the exchange constant JRKKY
=c16V4 / �D2U� as a function of U /D. In the wideband limit,
i.e., for small U /D, c approaches a constant value of c
=0.616 irrespective of the value of � /U. The dependence of
c on � for U /D�1 is due to the band-edge effects.

To determine the temperature TJ at which the RKKY in-
teraction becomes fully established, we calculate the cutoff
dependent JRKKY�E�, where E is the low-energy cutoff for k
and k� integrations, i.e., the integrals over k and k� become
�E

1dk� and �−1
−Edk. In Fig. 16 we plot the ratio ��E�

=JRKKY�E� /JRKKY
0 , where JRKKY

0 =JRKKY�E→0�. The ratio
��E� reaches an �arbitrarily chosen� value of 0.9 at E /U
�0.02. This value of E roughly defines TJ below which the
RKKY is fully developed. For small enough V �i.e., ��, the
value of TJ is positioned between T1

* �free-orbital to local-
moment transition temperature� and TF

* , the temperature of
ferromagnetic ordering of spins, given by TF

* =JRKKY
0 /�,

where � is a constant of the order one. For larger V, how-
ever, JRKKY�T� does not reach its limiting value at the tem-
perature where the spins start to order. In this case we obtain
the ordering temperature TF

* numerically as the solution of
the implicit equation

TF
* = JRKKY�TF

*�/� . �A5�

An approximate fit to ��E� in the wideband limit is ��E�
=1/ �1+xE /U� with x=12.2. We then obtain a solution for TF

*

in closed form:

TF
* =

�1 + 4x/��JRKKY
0 /U� − 1

2x/U

�
JRKKY

0

�
�1 −

x

�

JRKKY
0

U
+ O� JRKKY

0

U
�2� . �A6�

2. Sixfold symmetric U12=U case

We study the splitting between the singlet, the triplet
�same as above�, and the “exciton” states �I=0

=1/�2��↑ ↓ ,0
− �0, ↑ ↓ 
� and �I=1
=1/�2��↑ ↓ ,0

+ �0, ↑ ↓ 
�. Second order corrections are all equal: ES

�2�=ET
�2�

=EI=0
�2� =EI=1

�2� =−�S1+S2� where S1 and S2 are the same as in
the previously treated U12=0 case. There is again no splitting
to second order in V. The fourth order corrections are

ES
�4� = WS

ph + WS
pp + WS

hh,

ET
�4� = WT

ph,

�7�
EI=0

�4� = ET
�4�,

EI=1
�4� = ES

�4�,

where

WS
ph = 16V4 1

L2 �
k�kF,k��kF

1

�k − �k�
� 1

�U − 2� + 2�k�2 +
1

�U + 2� − 2�k��
2� ,
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WT
ph = 32V4 1

L2 �
k�kF,k��kF

3U2 + 6U��k − �k�� + 4
�2 + �k
2 + �k�

2 − �k�k� − ���k + �k���

�U − 2� + 2�k�2�U + 2� − 2�k�2��k − �k��
,

�8�

WS
pp = 16V4 1

L2 �
k1��kF,k2��kF

2�U − 2� + �k1�
+ �k2�

�2

�U − 2� + 2�k1�
�2�U − 2� + 2�k2�

�2�2U − 2� + �k1�
+ �k2�

�
,

WS
hh = 16V4 1

L2 �
k1�kF,k2�kF

2�U + 2� − �k1
+ �k2

�2

�U + 2� − 2�k1
�2�U + 2� − 2�k2

��2U + 2� − �k1
+ �k2

�
.

The triplet is degenerate with the I=0 state, while the
singlet and the I=1 state are higher in energy, as determined
by performing the integrations �results not shown�.

APPENDIX B: SCALING EQUATIONS TO SECOND
ORDER IN J

We consider an effective Hamiltonian of the form

H = �
k�

�kck�
† ck� + �

m

EmXmm + �
mm�,kk�,���

Jmm�
��� Xmm�ck�

† ck���,

�B1�

where Xmm�= �m
�m�� are the Hubbard operators and Jmm�
��� are

generalized exchange constants.
We write2


H11 + H12�E − H22�−1H21 + H10�E − H00�−1H01��1 = E�1,

�B2�

where subspace 2 corresponds to states with one electron in
the upper ��D� edge of the conduction band, 0 corresponds to
states with one hole in the lower ��D� edge of the band, and
1 corresponds to states with no excitations in the edges that
are being traced-over. Furthermore, Hij = PiHPj, where Pi are
projectors to the corresponding subspaces i.

To second order, the coupling constants are changed by

�Jmm�
��� = �0��D��

n


1

E − D + �k − En − H0
Jnm


� Jnm�

��

− �0��D��
n


1

E − D − �k� − En − H0
Jnm

��
Jnm�
�
 .

�B3�

We apply these results to the effective low-temperature
Kondo Hamiltonian

Heff = Hband + J1s · S1 + J2s · S2 − JRKKY
eff �S1 · S2 − 1/4� .

�B4�

Introducing spin-1 operator S defined by the following Hub-
bard operator expressions: Sz=X↑↑−X↓↓, S+=�2�X↑0+X0↓�,
and S−= �S+�†, we obtain

H = Hband + J̃s · S + JRKKY
eff XSS

+ �
sz�X0S + XS0� + s+�X↓S − XS↑� + s−�XS↓ − X↑S�� ,

�B5�

where index S denotes the singlet state and we have

J̃ =
J1 + J2

2
= J0�1 + 	2�/2,

� =
J1 − J2

2
= J0�1 − 	2�/2. �B6�

Equations �B3� reduce to two equations for J̃ and �

�J̃ = �0��D�� J̃2

D
+

�2

D + JRKKY
eff � ,

�� = − 2�0
��D�

D
�J̃ , �B7�

from which ensue the following scaling equations:

dJ̃

dl
= − �0J̃2 − �0

�2D

D + JRKKY
eff ,

d�

dl
= − 2�0�J̃ , �B8�

where l=log D. The initial bandwidth D is the effective
bandwidth Deff=0.182U for the Anderson model and we take

J̃�l=log Deff�= J̃ and ��l=log Deff�=� with J̃ and � taken

from Eq. �B6�. We integrate the equations numerically until J̃
starts to diverge. The corresponding cutoff D defines the
Kondo temperature. The results are shown in Fig. 14. The
scaling approach reproduces our NRG results very well.
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