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Padé approximant approach for obtaining finite-temperature spectral functions of quantum
impurity models using the numerical renormalization group technique
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1Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
2Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia

(Received 14 February 2013; published 28 June 2013)

We introduce an alternative approach for obtaining smooth finite-temperature spectral functions of quantum
impurity models using the numerical renormalization group (NRG) technique. It is based on calculating first the
Green’s function on the imaginary-frequency axis, followed by an analytic continuation to the real-frequency
axis using Padé approximants. The arbitrariness in choosing a suitable kernel in the conventional broadening
approach is thereby removed and, furthermore, we find that the Padé method is able to resolve fine details in
spectral functions with less artifacts on the scale of ω ∼ T . We discuss the convergence properties with respect to
the NRG calculation parameters (discretization �, z-averaging, truncation cutoff) and the number of Matsubara
points taken into account in the analytic continuation. We test the technique on the single-impurity Anderson
model and the Hubbard model (within the dynamical mean-field theory). For the Anderson impurity model, we
discuss the shape of the Kondo resonance and its temperature dependence. For the Hubbard model, we discuss
the inner structure of the Hubbard bands in metallic and insulating solutions at half-filling, as well as in the doped
Mott insulator. Based on these test cases, we conclude that the Padé approximant approach provides improved
results for spectral functions at low-frequency scales of ω � T and that it is capable of resolving sharp spectral
features also at high frequencies.
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I. INTRODUCTION

A nonmagnetic host metal doped with magnetic impurities
exhibits low-temperature anomalies in its thermodynamic and
transport properties known as the Kondo effect.1–3 The resis-
tance of such materials has a minimum at finite temperature
(the Kondo temperature, TK ).1 An unyielding mystery for
a number of years, this “Kondo problem” of the resistance
minimum was eventually theoretically explained by J. Kondo
by showing that the perturbation theory in higher order applied
to the s-d exchange Hamiltonian includes logarithmically
divergent terms.2 The effective exchange interaction strength
J is renormalized to larger values as the temperature is
reduced: magnetic impurities are weakly interacting at high
temperatures, but become strong electron scatterers on the
scale of TK .4–7 The system behaves as a renormalized
local Fermi liquid (FL) at low temperatures.8,9 Accurate
results for the temperature dependence of the anomalies in
the thermodynamic properties were obtained by K. Wilson
using a novel technique, the numerical renormalization group
(NRG).10–14 It consists in reducing the Hamiltonian for the
pointlike impurity to its one-dimensional form, discretizing
the continuum of conduction-band electrons in a logarithmic
way around the Fermi level, rewriting the Hamiltonian in the
form of a tight-binding chain with exponentially decreasing
hopping matrix elements, and numerically diagonalizing the
resulting Hamiltonian in an iterative way. The NRG results for
the thermodynamics of the Kondo model were later confirmed
by the Bethe ansatz approach, which provides an analytic
solution to the problem.15–17

While thermodynamic properties are simple to compute us-
ing the NRG,10,12,18,19 dynamical properties (spectral functions
and various dynamical susceptibility functions) and transport
properties (conductance, thermopower) require significantly

more effort.20–29 There are two main difficulties. The first
concerns the actual calculation of the raw spectral functions.
A number of algorithmic improvements over the years have
increased the reliability of the method,30–36 also at finite
temperatures.37. Since the NRG calculations are performed
for tight-binding chains of finite length, the raw spectral
functions are represented as sets of weighted δ peaks, and the
second difficulty consists in obtaining a smooth continuous
representation of the spectra. At zero temperature, one usually
performs spectral broadening using a log-Gaussian kernel,
which is well adapted to the logarithmic discretization grid.14

With high-quality raw results and using the z-averaging trick,
it is possible to obtain highly accurate final results with
few overbroadening effects.36,38,39 At finite temperatures, a
simple log-Gaussian broadening kernel is not appropriate
for ω � T (in units of h̄ = kB = 1). Instead, on low-energy
scales, one should switch to a Gaussian or Lorentzian kernel.40

Even when smooth crossover functions are used to glue the
broadening kernel for ω � T with that for ω � T ,37 the
resulting spectral functions exhibit artifacts in the crossover
frequency region that cannot be fully eliminated. It is thus
desirable to devise new approaches for obtaining more accurate
continuous representations of spectral functions.

Impurity problems have applications ranging from mag-
netically doped materials and heavy-fermion compounds,41,42

electron transport in nanostructures (quantum dots,43–50 car-
bon nanotubes,51 molecules and single-atom transistors,52–55

molecular magnets),56,57 to spectra of single atoms probed
using a scanning tunneling microscope (STM)58–60 and dissi-
pative two-state systems,61 but their importance has also vastly
increased in recent decades because they play a central role in
the dynamical mean-field theory (DMFT) for strongly corre-
lated electron materials.62–67 In the DMFT, a lattice problem
of correlated electrons (such as Hubbard model, periodical
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Anderson model, or Kondo lattice model) is mapped onto an
effective single-impurity problem subject to self-consistency
conditions. The approach is based on the observation that in
the limit of infinite dimensions or infinite lattice connectivity,
the self-energy function �(k,ω) becomes purely local63 and
depends only on frequency ω, not on momentum k. In this
limit the method is exact, but it is also a good approximation
for three-dimensional and some two-dimensional systems
where spatial correlations are less important. Many techniques
have been used in the past to solve the effective impurity
models, which is the most computationally demanding part
of DMFT calculations. Presently, the most popular methods
are exact diagonalization, quantum Monte Carlo, especially
the continuous-time algorithm (CT-QMC),68–70 and NRG. The
QMC is a stochastic simulation that is numerically exact, but
time consuming. The results for spectral functions are accu-
mulated in bins defined on the Matsubara imaginary-frequency
axis and to obtain the spectra on the real-frequency axis one has
to perform an analytic continuation,71 for instance using the
maximum entropy method71 or with Padé approximants.72,73

This procedure is not without peril and high quality numerical
results are required to obtain reliable spectra. The NRG,
on the other hand, can provide the results directly on the
real-frequency axis and is thus well adapted to study the very
low temperature properties and various details in the spectra.
At finite temperatures, the most vexing technical difficulty
of the NRG is the broadening problem discussed previously.
Since the DMFT consists of iteratively solving the effective
impurity problem, the spectral function artifacts at ω ∼ T tend
to amplify. This is particularly bothersome for calculations of
transport properties74–76 where the contribution to the integrals
comes mostly from the frequency window ω ∈ [−5T : 5T ].
Another issue in the DMFT(NRG) approach is the calculation
of the self-energy as the ratio of two Green’s functions14,30

�σ (z) = 〈〈[dσ ,Hint]; d†
σ 〉〉z

〈〈dσ ; d†
σ 〉〉z

, (1)

where Hint is the interaction part of the Hamiltonian, while
dσ is the impurity-orbital annihilation operator. The main
problem is that the causality requirement Im�(ω + iδ) < 0
can be (slightly) violated at low temperatures around the Fermi
level. Ironically, the difficulties occur at low temperatures and
on low-frequency scale, i.e., in the regime which is commonly
believed to be the strength of the NRG, while it performs rather
better than expected on intermediate and high-temperature and
frequency scales.

In this work, we explore an alternative approach to spectral
function calculations at finite temperatures. We propose to
calculate the Green’s functions on the discrete set of the
imaginary Matsubara frequencies and then (when necessary)
compute the Green’s function for real-frequency arguments by
analytic continuation using the Padé approximants. Switching
to the imaginary axis in the NRG may seem like a step in
the wrong direction, but it is motivated by the following
observations. (i) The NRG spectra are not affected by large
stochastic errors like the Monte Carlo data. The fine details
are therefore not lost and can be resolved by analytic
continuation. (ii) One directly obtains both real and imaginary
parts of the Green’s function on the imaginary axis, thus

Kramers-Kronig transformations are no longer necessary.
(iii) In the DMFT(NRG) loops, most steps of the calculation
can be performed in the Matsubara space; an analytic continu-
ation is only necessary to compute the hybridization function
on the real axis, which is, however, immediately integrated
over to obtain the discretization coefficients. (iv) There is less
arbitrariness compared to the broadening approach.

The paper is structured as follows. In Sec. II, we describe
the basic steps in the DMFT calculations, the NRG technique,
and our implementation of the Padé approximation. In Sec. III,
we test the method on single-impurity problems: we compute
the temperature dependence of the spectral function of the
resonant-level model and the single-impurity Anderson model,
and compare various approaches. In Sec. IV, we extend this
calculation with a self-consistency loop and study the Hubbard
model at finite temperatures. We conclude by discussing the
relative merits of the different techniques.

II. METHOD

A. Dynamical mean-field theory

The DMFT is based on the observation that in the limit
of infinite dimensions �(ω,k) → �(ω), which implies the
possibility of exactly mapping the lattice problem onto a single
impurity problem subject to self-consistency conditions.77–80

Let us consider the Hubbard model81–83

HHubbard =
∑
kσ

(εk − μ)c†kσ ckσ + U
∑

i

ni↑ni↓, (2)

describing a lattice of sites indexed by i which can be
occupied by electrons with spin σ = ↑ and σ = ↓. Here
εk is the noninteracting band dispersion, μ is the chemical
potential, and U the Hubbard repulsion. Furthermore, ciσ =
1/

√
N

∑
k eik·ri ckσ , and niσ = c

†
iσ ciσ is the local occupancy.

In the DMFT, the information about the lattice structure is
fully captured by the noninteracting density of states (DOS)

ρ0(ε) = 1

N

∑
k

δ(ε − εk). (3)

Using the Hilbert transform, one can compute the correspond-
ing Green’s function G0(z) in the full complex plane:

G0(z) =
∫ ∞

−∞

ρ0(ε)dε

z − ε
. (4)

For common lattices (such as Bethe, 2D, 3D, and infinite-
dimensional cubic lattices, as well as for flat band), there exist
analytic closed-form expressions for G0(z).

The Hubbard model maps onto the single-impurity Ander-
son model (SIAM):77–80,84–88

HSIAM =
∑
kσ

(εk − μ)f †
kσ fkσ − μn + Un↑n↓

+
∑
kσ

Vk(f †
kσ dσ + H.c.), (5)

where the operators fkσ annihilate an electron in the contin-
uum bath and dσ on the impurity site, while n = n↑ + n↓
with nσ = d†

σ dσ . The (complex) hybridization function 
,
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defined as


(z) =
∑

k

|Vk|2
z − εk

, (6)

fully characterizes the coupling between the impurity and the
continuum,89 i.e., there can be different (but physically fully
equivalent) descriptions in terms of the bath energies εk and
hopping constants Vk .

The quantity of main interest is the momentum-resolved
Green’s function

Gkσ (z) = 〈〈ckσ ; c†kσ 〉〉z (7)

and the corresponding spectral function

Akσ (ω) = − 1

π
ImGkσ (ω + iδ). (8)

They provide information about the electron dispersion in the
presence of interactions and can be used to determine the
thermodynamic and transport properties of the system within
the linear response theory.74,75,90 The output from the impurity
solver is the local impurity self-energy �σ (z), which in the
DMFT is taken to be equal to the lattice self-energy of the
correlated electron problem, thus

Gkσ (z) = 1

z + μ − εk − �σ (z)
. (9)

The local (k-averaged) lattice Green’s function is then

Gloc,σ (z) = 1

N

∑
k

1

z + μ − εk − �σ (z)

=
∫

ρ0(ε)dε

[z + μ − �σ (z)] − ε

= G0[z + μ − �σ (z)]. (10)

The DMFT self-consistency condition relates the local lattice
Green’s function and the hybridization function through


σ (z) = z + μ − [
G−1

loc,σ (z) + �σ (z)
]
. (11)

The hybridization function is then used as the input to the
impurity solver in the next step of the DMFT iteration. The cal-
culation proceeds until two consecutive solutions for the
local spectral function differ by no more than some chosen
convergence criterium. The approach to self-consistency can
be significantly accelerated using Broyden mixing, which can
also be very efficiently used to control the chemical potential
μ in fixed occupancy calculations.91

B. Numerical renormalization group

Wilson’s NRG is a nonperturbative numerical renormaliza-
tion group approach applied to quantum impurity problems.10

The cornerstone of the method is the logarithmic discretization
of the conduction band.10,32,36,92 The infinite number of the
continuum degrees of freedom is reduced to a finite number,
making the numerical computation tractable. The discretiza-
tion is chosen to be logarithmic because in the Kondo problem
the excitations from each energy scale contribute equally
to the renormalization of the effective exchange coupling.6

The band is divided into slices of exponentially decreasing

width,

I−
m = [−�−m, − �−(m+1)]D,

(12)
I+
m = [�−(m+1),�−m]D,

for holes and electrons, respectively, with m � 0. Here,
D is the half-bandwidth, while � > 1 is known as the
discretization parameter. A complete set of wave functions
is then constructed in each interval I±

m , the first chosen so that
it couples to the impurity, while other Fourier components are
localized away from it; only the first wave function is retained,
while all the others are dropped from consideration.10 This
approximation becomes exact in the � → 1 limit, but the
accumulated experience with the method indicates that it is
reliable even for very large � despite the seeming crudeness
of the approximation.93 The problem is then transformed to a
tridiagonal basis using the Lanczos algorithm, the result being
a tight-binding Hamiltonian, which is known as the hopping
Hamiltonian or the Wilson chain. A number of improvements
have been devised over the years. On one hand, it has been
shown that it is advantageous to perform calculations for
several interpenetrating discretization meshes and then average
the results.23,32 Such z-averaging (or twist-averaging) allows
more accurate calculations at larger values of � since the
discretization artifacts tend to largely cancel out for aptly
chosen meshes. On the other hand, modified discretization
schemes further reduce some systematic errors of the original
Wilson’s approach.32,36,92 These improvements are crucial if
the goal is to obtain accurate results.

The NRG calculations in this work have been performed
with the “NRG Ljubljana” package,94 which consists of two
parts. The first is a MATHEMATICA program, which initializes
the problem by performing the exact diagonalization of the
initial Hamiltonian in a chosen symmetry-adapted basis, and
by transforming the operators of interest to the eigenbasis. The
calculations are performed using a computer algebra system,
and the input to the program are expressions in the familiar
second quantization notation.95 All quantities are stored in the
form of irreducible matrix elements, and the Wigner-Eckart
theorem is used to take into account the symmetry properties.
The second part of the package is the C++ code, which
performs the iterative diagonalization. This consists of adding
the Wilson chain sites one by one, each time constructing the
Hamiltonian matrices in all invariant subspaces, diagonalizing
them, and transforming all the necessary operator matrices.
The full description at step N of the iteration corresponds to
the effective behavior of the system on the temperature/energy
scale ωN ∼ �−N/2. Since the Fock space grows exponentially
along the chain, only a small part of the computed eigenstates
are retained after each step. A convenient way to perform this
truncation is to keep the states up to some suitable energy
cutoff Ecutoff defined in terms of ωN . Alternatively, at most
Nkeep states are retained. The systematic error introduced
by truncation is small due to the energy-scale separation
property10,38 of the quantum impurity models: the matrix
elements between excitations of vastly different energy scales
are very small. The dynamical quantities are computed using
the spectral decomposition (Lehmann representation) for the
eigenstates of the full Hamiltonian. The original approach was
based on the observation by Sakai et al.22 that as one proceeds
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from one step to the next, the lowest few eigenstates split
due to the interaction with the added shell states, while the
intermediate lower levels do not show any essential change.
The intermediate states thus form a good approximation of the
eigenstates of the Hamiltonian in the infinite-chain limit. For
problems where the high-energy spectral features depend on
the low-energy behavior of the system, the spectral function
has to be computed taking into account the reduced density
matrix obtained from the density matrix of the low-energy
fixed point.31,96–98 It has been shown that a complete basis
for the full Fock space of the problem can be defined by
judiciously using the information from the discarded part of the
NRG eigenstates.33,34 This method does not suffer from over-
counting of excitations and it fulfills the normalization sum
rule.35 At finite temperatures, this scheme can be improved by
including the contributions to the density matrix from all NRG
shells.37 This full-density-matrix (FDM) approach is currently
the most reliable method for computing the finite-temperature
spectral functions using the NRG. In the DMFT applications,
one is particularly interested in the self-energy �, which may
be computed as the ratio30

�σ (z) = Fσ (z)

Gσ (z)
, (13)

where

Fσ (z) = 〈〈[dσ ,Hint]; d
†
σ 〉〉z. (14)

This is known as the self-energy trick (or � trick),30 and it has
recently also been implemented in QMC calculations.99

Since the hopping Hamiltonian is finite, the computed raw
spectral functions are represented as a sum of δ peaks:

ANRG,σ (ω) =
∑

j

wj,σ δ(ω − ωj,σ ). (15)

Alternatively, one may use fine-grained binning of these
delta peaks into very narrow intervals on a logarithmic grid
(for instance 1000 bins per frequency decade). To obtain
a meaningful continuous function, these peaks need to be
broadened. The original approach to obtaining a smooth curve
was by Gaussian broadening followed by separate spline
interpolation of the results in odd and even steps, and averaging
of the two curves.22 A better approach is broadening by the
log-Gaussian distribution function:40 each data point (delta
peak at ωj ) is smoothed into

F (ω,ωj ) = e−b2/4θ (ωωj )

b
√

π
exp

(
− ln2 |ω/ωj |

b2

)
, (16)

i.e., a Gaussian function on the logarithmic scale, where b is
the broadening parameter, chosen depending on the value of
the discretization parameter � and the number of interleaved
discretization meshes Nz. Peaks sharper than the width of
the broadening kernel will appear broader than they truly
are. Typically, the value of b is chosen to be 0.6 or less,
but with large Nz and small � it can be much reduced,
to the point of largely eliminating the NRG overbroadening
problems (at the cost of much longer computation time).36,38

At finite temperatures, the following broadening kernel has
been proposed:37

K(ω,ωj ) = L(ω,ωj )h(ωj ) + G(ω,ωj )[1 − h(ωj )], (17)

where

L(ω,ωj ) = θ (ωωj )√
πα|ω| exp

[
−

(
ln |ω/ωj |

α
− γ

)2]
,

G(ω,ωj ) = 1√
πω0

exp

[
−

(
ω − ωj

ω0

)2]
,

h(ωj ) =
{

1, |ωj | � ω0

exp
[−( ln |ωj /ω0|

α

)2]
, |ωj | < ω0

. (18)

Here α is the broadening parameter for the log-Gaussian part,
equivalent to b in the kernel in Eq. (16), γ = α/4, while ω0

is the cutoff where the log-Gaussian goes smoothly into the
Gaussian part; typically, ω0 is chosen to be of the order of
the temperature T . This broadening approach leads to sizable
artifacts on the scale of ω0. We find that in practice it is better
to use a slightly modified kernel:

K(ω,ωj ) = L(ω,ωj )h(ω) + G(ω,ωj )[1 − h(ω)], (19)

which differs only in the argument of the crossover function
h. This breaks the normalization condition, but produces
smoother spectra and the normalization is reestablished using
the self-energy trick. This procedure still leads to a slight
bump around ω = ω0, which can be further smoothed out
by averaging over several choices of ω0. The artifacts can,
however, never be completely eliminated. In the following
section, we therefore discuss an entirely different approach to
obtaining a continuous spectral function at finite temperatures.

C. Padé approximation

The Green’s function Gσ (z) is related to its corresponding
spectral function by

ImGσ (ω + iδ) = −πAσ (ω) (20)

and similarly for Fσ (z). Instead of performing the broadening,
the complex functions Gσ (z) and Fσ (z) (both analytic in
the upper complex half-plane, cf. Titchmarsh’s theorem) are
evaluated at the Matsubara frequencies

iωn = i(2n + 1)πT (21)

via the Hilbert transform:

Gσ (iωn) =
∫ ∞

−∞

ANRG,σ (ω)

iωn − ω
dω, (22)

and similarly for Fσ (iωn). Note that there is no need to perform
the Kramer-Kronig transformation to calculate the real parts
of Gσ (ω) and Fσ (ω). Equation (22) is actually just a finite sum

Gσ (iωn) =
∑

j

wσ,j

iωn − ωσ,j

. (23)

If the z averaing is used, it is performed at this point:

Gσ (iωn) = 1

Nz

Nz∑
n=1

∑
j

wn
σ,j

iωn − ωn
σ,j

. (24)

The self-energy is calculated on the imaginary axis in the
same way as on the real axis via Eq. (13), which holds in
the whole upper complex half-plane. From the self-energy in
the Matsubara frequencies �σ (iωn), one calculates the local
Green’s function Gloc,σ (iωn) using Eq. (10). To complete the
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PADé APPROXIMANT APPROACH FOR OBTAINING . . . PHYSICAL REVIEW B 87, 245135 (2013)

DMFT loop, one needs to calculate the hybridization function
on the real axis. We first calculate


σ (iωn) = iωn + μ − [
G−1

loc,σ (iωn) − �σ (iωn)
]
. (25)

This function is analytic in the upper complex half-plane so
we can perform an analytic continuation and evaluate 
 just
above the real axis to obtain the (real) hybridization function
�σ (ω):

�σ (ω) = −Im [
σ (ω + iδ)] . (26)

An analytic continuation is also needed to determine the
spectral function

Aσ (ω) = − 1

π
Im[Gloc,σ (ω + iδ)]. (27)

The generalized mathematical problem of analytic contin-
uation can be stated as follows: find an analytic function f (z)
in the upper complex half-plane that coincides with calculated
values on the discrete set of points

{f (zj ) = fj }, (28)

where (zj ,fj ) are the known point-value pairs of the function.
The function f (z) must also obey the asymptotic behavior of
the Green’s function [or 
σ (z)], namely,

f (z) ∼ 1

z
. (29)

There exist two main numerical techniques for the analytic
continuation: the maximum entropy method100,101 (MEM) and
Padé approximation.73 MEM is essentially an improved fit to
available data, taking into account known physical properties
of the Green’s/spectral function, such as sum rules, possible
symmetries and higher moments of the distribution.100 In this
article, we focus on Padé approximation; the comparison of
MEM and Padé in the context of NRG are yet to be explored.

The Padé approximation method is based on the assumption
that f (z) is a rational function

f (z) = p0 + p1z + · · · + pr−1z
r−1

q0 + q1z + · · · + qr−1zr−1 + zr
, (30)

where pj and qj are the unknown complex coefficients to
be determined. We do not take any physical properties into
account, thus the sum rules and symmetries can be violated.
However, if the input points are accurate enough, we can expect
possible violations to be small. Inserting the Padé approximant
(30) into Eq. (28) for each point (zj ,fj ) generates a linear
system of equations. Defining a vector of unknowns

x = [p0,p1,. . .,pr−1,q0,q1,. . .,qr−1], (31)

a right-hand-side vector

b = [
f0z

r
0,f1z

r
1,. . .,f2r−1z

r
2r−1

]
, (32)

and a matrix

A =

⎛
⎜⎝

1 z0 z2
0 · · · zr−1

0 −f0 −f0z0 · · · −f0z
r−1
0

1 z1 z2
1 · · · zr−1

1 −f1 −f1z1 · · · −f1z
r−1
1

...
...

...
...

...
...

...

⎞
⎟⎠ ,

(33)

the solution for the coefficients is

x = A−1b. (34)

We have assumed that the number of points (zj ,fj ) is 2r .
Alternatively, one can use recursive relations of the continued
fractions representation of the Padé approximant to evaluate it
at specific points.72

Fitting a rational function is a numerically ill-defined
problem. Let us define ξ as the ratio between the biggest and
the smallest element in the matrix A. If zj are the Matsubara
frequencies, the ratio is approximately

ξ = [(4r + 1)πT ]±r , (35)

where we take the minus sign in the power if the base is
smaller than 1. In order to invert the matrix A, the numeric
precision of 2 log2 ξ binary digits is needed,73 i.e., much more
than the standard 53-bit mantissa of 64-bit double-precision
floating point numbers. For this reason, in our implementation
of the Padé method, we use the GNU Multiple Precision
Arithmetic Library (GMP) for arbitrary precision floating-
point numerics. To solve the linear system of equations, we
perform Gaussian elimination without pivoting. The process
can be performed in O(r3) multiplications. Each multiplication
takes O(b ln b) CPU cycles, where b is the number of mantissa
bits in the floating point used (using fast Fourier transform
multiplication).

When the coefficients of the Padé approximant are known
to high precision, one can approximately calculate the value
of the Green’s function in any point of the upper complex
half-plane using Horner’s polynomial evaluation scheme. Most
interesting is to use the values just above the real axis
to compute the hybridization function �σ (ω) via Eq. (26)
or the spectral function Aσ (ω) via Eq. (27). The Padé
approximant can be, however, also used for extrapolation
when an insufficient number of Matsubara frequencies have
been computed. It provides a good fit to tails even when the
asymptotic behavior is not yet reached and simple asymptotic
1/z fit on tails does not work.

In most calculations, we use Nm = 2r = 350 Matsubara
frequencies and internal matrix inversion precision of 1024
mantissa floating bits. In most cases, taking more points does
not improve the solution; in fact, sometimes taking less points
helps avoid some issues. The precision of input points plays
a big role in how good the Padé approximant is, as already
discussed in Ref. 73. We remark that one can also determine
the coefficients of the rational function of order r using the
data from more than Nm = 2r points by least-squares fitting.

III. RESULTS FOR A SINGLE-IMPURITY PROBLEM:
ANDERSON MODEL

We first consider a single impurity in a metal host described
by the SIAM, now written as

HSIAM =
∑
kσ

εkf
†
kσ fkσ + εn + Un↑n↓

+
∑
kσ

Vk(f †
kσ dσ + H.c.), (36)

where ε is the impurity level, while the chemical potential is
fixed to zero in this section, μ = 0. The spectral function can
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in general be expressed as

A(ω) = − 1

π
Im

(
1

ω + iδ − ε − �(ω) − 
(ω)

)
. (37)

When the continuum is modeled as a flat band, i.e., a band
with a constant density of states ρ in the interval ω ∈ [−D : D]
which couples to the impurity with a constant hopping Vk ≡ V

so that the hybridization strength

� = πρV 2 (38)

is a constant, the complex hybridization function 
(z) is given
as


(z) = −�

π
ln

(
z/D − 1

z/D + 1

)
, (39)

or, on the real-frequency axis for −D < ω < D,


(ω + iδ) = −�

[
i + 1

π
ln

(
1 − ω/D

1 + ω/D

)]
. (40)

In the limit U = 0, the SIAM is equal to the noninteracting
resonant-level model whose spectral function is given exactly
by Eq. (37) with �(ω) ≡ 0. For small �, the spectral function
is well approximated by a Lorentzian

A(ω) = �/π

(ω − ε)2 + �2
. (41)

For larger �, the hybridization self-energy effects become
sizable, thus the curve shape deviates from a pure Lorentzian
form, the peak is shifted to

ω0 = ε − �

π
ln

(
1 − ω0/D

1 + ω0/D

)
, (42)

and, in addition, near the band edges ω = ±D the spectral
function shows additional features: local minima at

ωmin = ±D

√
1 − 2�

πD
, (43)

and local maxima at ωmax given as the solutions of the equation

π (ωmax − ε) + � ln

(
1 − ωmax/D

1 + ωmax/D

)
= 0, (44)

located near the band edges. For ε = 0 and moderately large
�, they are approximately equal to

ωmax = ±
[

1 − exp

(
−πD

�

)]
, (45)

i.e., the maxima are located exponentially close to the band
edges. Beyond ωmax, the spectral function goes to zero at ω =
±D in a continuous way, but with a diverging slope. Similar
behavior is expected in all models where the imaginary part
of the hybridization function drops to zero discontinuously,
so that its real part (Hilbert transform) has a logarithmic
singularity. This is the case, for example, for a 2D cubic lattice
DOS with


(z) = 2�D

π2z
K(D2/z2), (46)

where K is the elliptic function. The weight of the band-
edge features is exponentially small for small �, but may be
appreciable for moderate � of the order of the bandwidth, or if

the main spectral peak is close to the band edge (for instance,
a few times �). Such features typically are not visible in the
NRG results because of the overbroadening effects, although
in a careful calculation with small broadening width and for
many values of the twist parameter z, they may be observed.36

In the other case, when Im
 goes to zero continuously, the
spectral function decreases monotonously near the band edges.
We note that in noninteracting models, the spectral function
does not depend on the temperature.

Unless otherwise noted, the NRG calculations in this
section are performed with the discretization parameter � = 2,
with the z averaging over Nz = 16 values of the twist parameter
using a modified discretization scheme which eliminates the
band-edge artifacts of the conventional approach (nonadaptive
type).36,92 The high number of z values is important for the
Padé approach and is further discussed in the following.
Spectral functions are computed using the FDM NRG scheme
and the � trick. The Wilson chain was sufficiently long so that
the corresponding energy scale was smaller than any scale in
the problem (including the temperature). The truncation cutoff
is set at Ecutoff = 10ωN . Flat band with constant � is used in
all cases.

A. Noninteracting case, U = 0

Numerical calculation of a spectral function using the NRG
is a nontrivial test of the method even in the absence of
interactions. Clearly, the � trick would trivially produce the
exact result. Nevertheless, there are other cases where the
calculation of a spectral function cannot be improved by this
trick (the T -matrix spectral function for the Kondo impurity
model is a case in point), thus it is useful to perform a
benchmark study of the directly computed (i.e., no � trick)
spectral function for an exactly solvable noninteracting case.
The conclusions about the broadening properties are relevant
for a generic spectral function.

Even though the spectral function of a noninteracting
problem does not depend on the temperature, numerical
approaches generally have more or less severe difficulties
reproducing this simple fact. In Fig. 1, we therefore first
analyze the NRG results for the noninteracting resonant-level
model obtained by the conventional broadening technique with
a relatively small broadening parameter α = 0.2 and by the
proposed Padé approximant method, and compare them with
the exact result. We consider a peak centered at ω = ε = 0,
i.e., at the Fermi level, where the NRG is said to have very
good spectral resolution. In Fig. 1(a), we clearly observe the
advantages of the Padé procedure at finite temperatures (here
T = �): the Padé approximant produces a spectral function
which practically overlaps with the analytic formula, unlike
the broadening procedure which produces a severely distorted
spectral peak with missing spectral weight at low frequencies
(the spectral peak tails are, however, well reproduced in both
approaches; furthermore, we note that in the T � � limit,
the broadening reproduces the exact results to a very good
approximation on all frequency scales, thus the problems
become manifest only at finite temperatures). In Fig. 1(b),
we compare Padé approximant results obtained at different
temperatures. The best agreement with the exact results is
obtained for T � �, which is expected since for a temperature
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FIG. 1. (Color online) (a) Spectral function of the noninteracting
resonant-level model obtained with broadening (α = 0.2) and with
the Padé approximant. The Padé approximant overlaps nearly
perfectly with the analytic result. (b) Spectral functions calculated at
different temperatures T using the Padé approximant [i.e., using the
sets of Matsubara points iωn = i(2n + 1)πT with the raw results of
NRG calculations performed at chosen temperatures T ]. The analytic
result does not depend on the temperature. Deviations in the numerical
results occur for T � �.

scale comparable to the characteristic physical scales of the
problem, the finite set of the Matsubara point provides a well
matched sampling. For T � �, the agreement remains good
but requires a sufficient number of the Matsubara points Nm

(this issue is discussed in the following). Furthermore, for
T = 10−4, we observe some artifacts on the flanks of the curve
(these are also discussed later on). For T  �, we find that the
spectral height is underestimated also in the Padé approximant
approach, but less severely than in the broadening scheme.
This actually indicates a limitation of the NRG method itself,
not of the Padé approximation scheme. Even at high T the
Green’s function at the corresponding Matsubara frequencies
should contain the necessary information to reconstruct the
Lorentzian peak, but the output from the NRG itself already
has sizable systematic errors. We explore this question in more
detail by plotting the raw Green’s function on the Matsubara
axis in panel (a) of Fig. 2 as well as the relative error in
panel (b). The exact expression on the imaginary axis is (for
ε = 0 and flat band)

G(iy) = − i

y + �
π

arg
(

iy−D

iy+D

) . (47)

We find that the systematic error of NRG is below 0.5%.
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FIG. 2. (Color online) (a) Imaginary part of the Green’s function
for the noninteracting resonant-level model (same parameters as
in Fig. 1) evaluated at the Matsubara frequencies for different
temperatures. The analytic solution is shown with solid black line.
(b) Relative errors of raw Matsubara spectral functions (dots) and the
corresponding Padé approximants (solid lines). The dots quantify the
intrinsic NRG errors, while the lines measure the full systematic error
(intrinsic + analytic continuation errors).

We study the behavior near the band edges using the
resonant-level model with a very large hybridization �/D =
0.3, see Fig. 3. The band-edge peaks are completely washed
out in the broadening approach and the spectral function has
long tails in the region where it should be equal to zero. The
Padé approach resolves the band edges, although it is unable to
correctly resolve the shape and the width of the near-band-edge
resonances. Since the Padé approximant is a rational function,
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FIG. 3. (Color online) Spectral function of the noninteracting
resonant-level model with large hybridization �/D = 0.3, where the
behavior at the band edges ω = −D and D may be compared.

245135-7
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FIG. 4. (Color online) (a) Spectral function of the noninteracting
resonant-level model with a peak centered far away from the Fermi
level, ε  �. Standard approach produces a severely overbroadened
result since the kernel width for α = 0.2 is �br ≈ αε = 10−2. The
Padé method is much more successful, although the peak is slightly
shifted away from its correct position. (b) Comparison of the spectral
functions computed with the Padé approximant for a range of
temperatures. Similar degree of agreement is produced for all T

considered.

it cannot describe a precipitous drop to zero at band edges. The
Padé approach also better describes the behavior at the Fermi
level, which is underestimated when broadening is used.

We now consider the asymmetric case where the spectral
peak is located at ε �= 0, i.e., away from the Fermi level. This
is the situation where the broadening procedure has notorious
difficulties. The width of the log-Gaussian kernel is namely
proportional to the frequency,

�br ≈ αω ≈ αε, (48)

where α is the broadening parameter. If the intrinsic width of
the spectral feature considered is much less than �br, significant
overbroadening will occur. In the example presented in Fig. 4,
we take a rather extreme case of �/D = 10−3, while �br/D ≈
10−2 for α = 0.2 and ε = 0.05. The plot in panel (a), indeed,
shows that the broadening procedure produces a severely
overbroadened peak, which is nearly a flat line on the scale of
the figure. The Padé approximant, on the other hand, does
not have difficulties reproducing narrow Lorentzian peaks,
as expected. We find, however, that the peak is somewhat
displaced from the correct position, and is slightly wider.
In panel (b), we show that the spectral functions depend on
the temperature in a nonsystematic way, although the result
is acceptable for all temperatures considered. The deviations

from the exact results may again be related to the raw output
from NRG, rather than to the Padé procedure.

The spectral function computed using Padé approximation
is not guaranteed to fulfill the normalization sum rule. The
Padé approach is a simple fitting procedure where the goal is
to construct a rational function that exactly matches function
values on a range of discrete (Matsubara) points, without any
further constraints. There is no a priori reason for this function
to be such that its integral on the real axis is normalized, since
one is essentially performing an extrapolation. Nevertheless,
we find that the results are rather satisfactory. For the peak
centered at the Fermi level, the normalization deviates from 1
to at most a few per million. For a peak away from the Fermi
level, the deviations can be sizable, up to several percent,
especially for larger �. In principle, one could reformulate the
Padé approximation as a least-squares-fitting procedure and
implement the normalization sum rule (and perhaps additional
higher-moment sum rules) as a constraint on the parameters.
This is an idea worth pursuing. (If the self-energy trick is used,
as for interacting models discussed in the following section,
the normalization is recovered in the final result.)

B. Interacting case, U > 0

We now turn to the interacting case with finite U . For
U > π� and near half-filling, the system is in the Kondo
regime.84,85,102 As the temperature is reduced, on the temper-
ature scale of U , the charge fluctuations on the impurity site
freeze-out and the impurity may be described solely in terms of
its spin degrees of freedom;7,12,103 using the Schrieffer-Wolff
transformation,103 the model maps onto the Kondo impurity
model

HKondo =
∑
kσ

εkf
†
kσ fkσ + JS · s, (49)

where the Kondo exchange coupling constant J is given by

ρJ = 2�/π

−ε
+ 2�/π

ε + U
, (50)

S is the impurity spin operator, while s is the conduction-
band spin density at the impurity position. At the Kondo
temperature, given by12

TK ∼ U exp

(
− 1

ρJ

)
, (51)

the spin degree of freedom is screened by the conduction-band
electrons (the Kondo effect). The two characteristic scales are
also reflected in the spectral features: the charge fluctuations
are associated with spectral peaks at ω = ε and ω = ε + U

with half-width at half-maximum of 2�, while the screening
leads to a Kondo resonance104 pinned to the Fermi level, with a
spectral width of the order of the Kondo temperature. The zero-
temperature spectral function at the Fermi level is determined
by the Friedel sum rule105

A(0) = sin2 δq.p.

π�
, (52)

where δq.p. is the quasiparticle scattering phase shift in the
local FL theory of the SIAM. If the system is particle-hole
(p-h) symmetric, i.e., if δ = ε + U/2 = 0, then δq.p. ≡ π/2,
irrespective of the U/� ratio, thus there is a constraint
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π�A(0) = 1. In the deep Kondo regime, U/π�  1, the
phase shift is close to π/2 even if the p-h symmetry is slightly
broken. Unless � � D, we also expect some features near the
band edges, just like in the noninteracting case, as discussed
above. At finite temperatures, the Kondo resonance is washed
out starting at T ∼ TK . In this work, we use the definition of
TK based on transport properties, i.e., TK is the temperature
where the conductance through a nanodevice described by
the SIAM is reduced to one-half the conductance quantum,
G(T = TK ) = G0/2. This definition was used by Hamann,
Nagaoka, and Suhl; it is sometimes denoted as TK,H . In
addition, there is Wilson’s thermodynamic definition χ (T =
TK,W )/(gμB)2 = 0.07, or the definition commonly used in the
perturbation theory works, which is denoted as T

(0)
K . They are

related through T
(0)
K = 0.4128TK,W and TK,H = 2.2TK,W .

In Fig. 5, we plot the spectral functions in the p-h symmetric
case for two different choices of U and �, but with the
same �/U ratio. The curves obtained by broadening without
the � trick are rather typical of standard NRG results: the
Kondo resonance is well captured, but the Hubbard peaks
are significantly over-broadened. For U/D = 1, the spectral
density remains finite even far outside the conduction band
due to the long tails of the broadening kernel. Furthermore, no
features near the band edges are detected.

The curves obtained by the Padé approach are significantly
improved even without the � trick. They show all the expected
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FIG. 5. (Color online) Spectral functions for the interacting
single-impurity Anderson model (SIAM) obtained with broadening
(α = 0.2) and by Padé approximation, with and without the � trick.
Two sets of parameters with the same �/U ratio are used, thus
the effective Kondo exchange coupling constant J is the same. For
U/D = 1, the Hubbard peaks are located close to the band edges,
and additional spectral features can be resolved at the edge. For
U/D = 0.5, the Padé results with and without the �-trick overlap
nearly perfectly, while for U/D = 1 there are some small differences.
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FIG. 6. (Color online) Spectral function of the single-impurity
Anderson model for different numbers of kept states, Nkeep, in the
NRG procedure. The artifacts (for instance, the dip at ω/D = 0.5 for
Nkeep = 500) are truncation-cutoff dependent, thus they stem from
the raw NRG results.

features: the Kondo resonance, the Hubbard peaks, and (for
U/D = 1) the near-band-edge resonances, followed by a fast
decay to zero outside the band.

When the � trick is used, the improvement is dramatic in
the broadening approach, since the overbroadening is strongly
reduced. For the U/D = 1 case, the behavior near band edges
is also improved. In the Padé approach, however, the use of the
� trick has very little effect. We thus conclude that when the
� trick is not used, the Padé approximant approach is better
than broadening, and that the Padé approach reduces the need
for using the self-energy trick. As discussed previously, the
� trick is still very useful to restore the normalization of the
spectral function to 1.

However, when using the Padé approximant we also
observe some anomalies. Because they appear at different
locations for different NRG truncation parameters, see Fig. 6,
we argue that they are a direct manifestation of the systematic
NRG errors that are reproduced too accurately by the Padé
approximation. The standard broadening approach hides such
anomalies, but they are, in fact, present in the spectra and
may be revealed in “high-resolution” calculations with small
broadening-kernel width. The Padé approximation, however,
appears to overemphasize them. Improved results may be
obtained by averaging over different truncation cutoffs.38

In the broadening approach, there is significant arbitrariness
in the choice of the shape of the kernel, its width, and the
approach to handle the ω � T and ω � T parts in distinct
ways. In the analytic continuation approach, there is, in
principle, no arbitrariness, since the information about the
Green’s function on the set of Matsubara points fully and
uniquely determines the Green’s function in the whole com-
plex half-plane, in particular on the real axis. The way the
continuation is performed is, clearly, nonunique, but once the
Padé approximation approach is chosen, the only adjustable
parameter is the number of the Matsubara points taken into
account in the fitting procedure. In QMC calculations, it is
practice to use sufficiently many Matsubara frequencies to
reach the asymptotic 1/z behavior on the imaginary axis which
corresponds to choosing ωNm

 U . (Note that the number
of points is temperature dependent.) In NRG calculations,
however, we observe that we can recover the tails using
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FIG. 7. (Color online) (a) Spectral functions of the single-
impurity Anderson model obtained with Padé approximant using the
first Nm Matsubara frequencies. (b) Relative difference between the
spectral functions computed with Nm = 1000 Matsubara frequencies
compared to those for lower Nm.

less frequencies. The central peak is well reproduced using
only Nm = 50 frequencies and Nm = 350 is enough to obtain
essentially fully converged spectral function, as shown in
Fig. 7(a). In Fig. 7(b), we plot the relative differences between
the Padé approximants for different numbers of Matsubara
points. In the Kondo peak region, the differences are below
0.01, thus the relative error contributed by the analytic
continuation itself may be estimated to be well below one
percent. From this, one may draw the conclusion that the
main source of error at low frequencies in this approach is the
systematic error of the NRG itself, not the analytic continuation
procedure. At higher frequencies, the errors are slightly larger;
in particular, at the artifacts discussed above the error may
locally be up to 10%.

We find that the shift away from the real axis δ in the
expression for the spectral function A(ω) = −(1/π )ImG(ω +
iδ) does not play an important role, since typically there are no
poles of the Padé rational function on the real axis (in which
case it is, in fact, safe to put δ = 0). For large δ, artificial
broadening is introduced, see Fig. 8.

Of particular interest is the low-energy part of the spectral
function, i.e., the Kondo resonance, because it is directly
responsible for the conductance anomalies observed in mag-
netically doped metals and in semiconductor quantum dots.
At nonzero temperatures, the shape of the resonance is
difficult to reliably establish due to the broadening problems.
Different version of the broadening procedure yield improved
results in some cases, but worse in others. For example, an
“optimized” scheme which produces less artifacts when there
is a low-frequency spectral peak may lead to more pronounced
artifacts in the case of a low-frequency spectral dip (and vice
versa). There is thus no universal choice. The comparison in
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FIG. 8. (Color online) Spectral functions of the single-impurity
Anderson model obtained with Padé approach using different shifts
from the real axis.

Fig. 9, indicates that the Padé approximant approach does
not create bumps near ω = ±T , unlike the broadening. In
addition, it appears that broadening leads to a significant
underestimation of the height of the spectral peak at its center.
Using the � trick in the Padé approach fixes the normalization
problem. Figure 9 illustrates one of the main results of this
work: the Padé approximant approach allows to determine the
finite-temperature spectral functions with less artifacts on the
scale of ω ∼ T . The shape of the Kondo resonance is further
discussed in Appendix A.

A function, analytic in the upper complex half-plane, is
fully determined by its values on a countably infinite set of
points. When fitting the Padé approximant, one commonly
takes the values of the function at the Matsubara points iωn

for a finite number Nm of consecutive values of the index
n, i.e., n = 1,2, . . . ,Nm. This is, however, not necessary, nor
always optimal. In particular, when the temperature T is very
low, the Matsubara points are very dense and the first Nm

points do not necessarily contain enough information about
the high frequency scales, thus it is not possible to reconstruct
the full spectral function. In these circumstances, we find it
convenient to increase the spacing to s, so that we use the
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Padé (Σ-trick)
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FIG. 9. (Color online) Close-up view of the top of the Kondo
resonance at a temperature greater than TK . Note the deviation of the
peak shape from parabolic behavior when broadening is used.
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FIG. 10. (Color online) (a) Spectral functions of the SIAM at
very low temperature obtained using Padé approximations, which
use nonconsecutive Matsubara frequencies as input: iωn = i(2n +
1)πsT . The parameter s quantifies the step length. The inset (b) shows
a close-up on the Kondo resonance. (c) Green’s function on the
imaginary-frequency axis, indicating the Matsubara points taken into
account in the Padé approximant construction. The black line is the
asymptotic 1/z form.

imaginary-frequency points

iωn = i(2n + 1)sπT . (53)

This corresponds to using the Matsubara points for a higher
effective temperature sT , even though the raw spectral data
were computed at the actual physical temperature T . The
results of this procedure are illustrated in Fig. 10 for the
case when the temperature is much below the lowest intrinsic
temperature scale of the problem (here the Kondo temperature
TK = 4.6 × 10−3, thus T/TK = 2 × 10−4). For the standard
choice of consecutive Matsubara points, s = 1, we find results
that are clearly incorrect at high frequencies, even though the
Kondo resonance appears to be well resolved. For s = 10, the
Hubbard peaks are still not resolved, but for s = 100, they are
well reproduced. Finally, for s = 1000, the spectral function
is fully resolved, including the band-edge features. We note
that for s = 1000 the Matsubara points are chosen up to the
asymptotic 1/z tail of the Green’s function, see Fig. 10(c).
These results are very instructive, since they indicate that the
information about the temperature is contained in the raw NRG
results, not in the choice of the Matsubara frequencies. At low
physical temperatures, it is thus perfectly safe to use high
fictitious temperature in the Padé approximant calculation.

It is rather surprising that the Padé approximant produces
smooth spectral functions with relatively little artifacts, given
that the output from the NRG consists of a set of δ peaks at
excitations energies which tend to be clustered. We indeed
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FIG. 11. (Color online) Spectral function of the SIAM for
different number Nz of the z-averaging discretization meshes. For
small Nz, the spectra exhibit a large number of spurious resonances,
which are eliminated at larger Nz.

find that the Padé fitting applied to the results from a single
NRG run with a specific discretization mesh (i.e., Nz = 1)
produces meaningless results, see Fig. 11. However, already
at Nz = 2 the results are tremendously improved; the Kondo
resonance, the Hubbard peaks, and the band-edge features are
all resolved, located at the proper positions and with roughly
correct spectral widths, although there are still sizable spurious
spectral peaks. With finer z averaging, at Nz = 4 and 8, the
results are almost converged with only some minor artifacts.
At Nz = 32 and beyond, we find no further improvement.

In Fig. 12, we study the convergence with respect to the
NRG discretization parameter �. The continuum limit is
restored for � → 1, but practical calculations are only possible
for � � 1.5. We find that the artifacts are indeed reduced for
smaller �, in particular, in the Hubbard peak region and near
band edges. The form of the Kondo resonance is well described
by all � in the range considered, but there appears to be a small
yet systematic trend toward higher Kondo resonance height
for smaller �. We have verified that the Kondo resonance is
adequately described even for much higher � = 4, but the
description of the Hubbard peaks becomes increasingly poor
(results not shown).
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FIG. 12. (Color online) Spectral function of the SIAM for
different values of the discretization parameters �.
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C. Dynamic susceptibilities

The spin and charge susceptibilities are defined as

χs(z) = 〈〈Sz; Sz〉〉z, χc(z) = 1
4 〈〈n; n〉〉z, (54)

where Sz = (1/2)(n↑ − n↓) and n = n↑ + n↓, nσ being the
impurity occupancy operators. We use units such that gμB = 1,
where g is the g ratio and μB is the Bohr magneton, and we
set the electron charge e = 1. The factor 1/4 in χc is added
for convenience to make the two susceptibilities equal in the
noninteracting limit U = 0 for the symmetric case.

For U = 0, the susceptibilities can be calculated exactly in
terms of pair propagators

�
pσ

hσ ′(ω) = i

2π

∫ ∞

−∞
Gσ (ω + ω′)Gσ ′(ω′)dω′,

(55)

�
pσ

pσ ′(ω) = i

2π

∫ ∞

−∞
Gσ (ω − ω′)Gσ ′(ω′)dω′,

as

χs(ω) = 1
2�

p↑
h↓ (ω), χc(ω) = 1

2�
p↑
p↓(ω). (56)

The Green’s functions here are time ordered, not retarded.
The analytic expression in the wide-band limit are given in
Ref. 106. For a finite flat band, they need to be computed
numerically. Usually, we plot the imaginary parts denoted as
χ ′′(ω) = Im[χ (ω)], i.e., there is no −1/π factor as in the
spectral function.

The Korringa-Shiba relation is a statement about the spin
and charge dynamical susceptibilities in the low-frequency
limit. It can be written as

lim
ω→0

Imχ (ω)

ω
= p[Reχ (0)]2, (57)

where p is a constant exactly equal to 2π in the wide-band
limit106,107 (�,U � D in SIAM, or J � D in the Kondo
model). For a band of finite width, the Korringa-Shiba relation
takes a slightly different form:107

lim
ω→0

Imχ (ω)

ω
= 2π [Re〈〈Sz; Sz + Sband〉〉0]2 , (58)

where Sband is the spin of the conduction-band electrons, thus
the correlator on the right-hand side of Eq. (58) is the impurity
magnetization induced by a small magnetic field applied to
all electrons in the system.107 (See Ref. 108 for a related
discussion regarding the thermodynamic susceptibility and
the Clogston-Anderson compensation theorem.) Alternatively,
assuming proportionality between the magnetization in the
impurity and in the band, one may work with Eq. (57) using
an effective parameter p. For instance, for a noninteracting
resonant-level model with ε = 0 and �/D = 10−1, one finds
p ≈ 0.889 × 2π , while for �/D = 10−2, p ≈ 0.987 × 2π .
The correction to p/(2π ) is thus approximately proportional
to �/D.

We first test the calculation of susceptibilities on the U = 0
model in the T → 0 limit, for a flat band with �/D = 10−2.
Spin and charge susceptibilities are the same in this case,
χs(ω) = χc(ω). In Fig. 13, we compare the NRG results
for χ ′′ obtained with broadening and Padé, as well as the
analytic results in the wide-band limit and for the actual
flat band. We observe that the susceptibility function has a
peak associated with the charge fluctuation scale of � and

10-3 10-2 10-1 100

ω/D

10-4

10-3

10-2

10-1

100

χ"
(ω

)

analytic (wide-band limit)
analytic
Pade
broadening

U=0, Γ/D=10-2, ε=0

FIG. 13. (Color online) Dynamical charge susceptibility of the
noninteracting resonant-level model computed with broadening and
with the Padé continuation. We also compare analytic results for the
wide-band limit (D → ∞, dashed line) and finite flat band (full line),
T/D = 10−4.

a sharp drop at the band edge D. The analytic result
obtained in the wide-band limit obviously does not account
for the drop, which also explains the difference between the
wide-band-limit coefficient 2π and the effective coefficient
p = 0.987 × 2π . The two numerical results overlap to a high
degree, except near the band edge where the Padé approximant
better describes the sharp decrease. We find that the NRG result
for the slope Imχ (ω)/ω agrees within one per mil with the
exact result, while Reχ (0) obtained via the Kramers-Kronig
transformation of χ ′′ has a one percent error. We thus obtain
p = 0.967 × 2π , which is two percent lower than the exact
result. Of course, Reχ (0) may be determined more accurately
in NRG by other means.

In Fig. 14, we plot the dynamical spin and charge sus-
ceptibilities for the interacting SIAM in the Kondo regime
for a range of temperatures. The charge susceptibility has a
dominant peak on the scale of U (the maximum for T = 0 is
at ω ≈ 0.64U ), and a slight change of slope at the band edge
ω = D. The spin susceptibility has a dominant peak associated
with spin fluctuations on the scale of TK , a hint of a spectral
feature at the frequency where the charge susceptibility has a
maximum, and a drop at the band edge D. With increasing
temperature (in the range T ∼ TK ), the charge susceptibility
peak diminishes slightly, while the main peak in the spin
susceptibility shifts to higher frequencies and decreases in
magnitude.

For comparison, we also plot the spin susceptibility curves
obtained using the broadening procedure in Fig. 15. The curves
show artifacts at ω ∼ T , while Padé results feature a single
well-defined peak, which is the expected result. Despite this
improvement, we still observe some difficulties with the Padé
approximant approach: it does not produce the expected slopes
in the ω → 0 limit [see, for example, the T/D = 3 10−3 curve
in Fig. 14(a)].

In order to determine the true origin of the problem, we
study the raw binned data and plot the cumulant function

C(x) =
∫ x

0
χ ′′

NRG(ω)dω, (59)
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FIG. 14. (Color online) Dynamical spin (top) and charge (bottom)
susceptibility of the single-impurity Anderson model obtained with
Padé continuation for a range of temperatures. The Kondo tempera-
ture is TK = 2.5 10−3D.

which is relatively smooth for large Nz. If χ ′′(ω) truly behaved
linearly near ω = 0, the cumulant should be quadratic for small
x. We confirmed that this indeed holds to a good approximation
for x somewhat lower than the lowest energy scale of the
problem (� for the noninteracting case, TK for the SIAM),
see the T/D = 10−8 results in Fig. 16. However, for x much
lower than the temperature T , the slope extraction becomes
unreliable, see the T/D = 10−4 results. For small x, the
cumulant is noisy and is not even positive in some intervals.
This indicates that the Korringa-Shiba relation can only be
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FIG. 15. (Color online) Dynamical spin susceptibility obtained
using the broadening procedure (to be compared with the upper panel
of Fig. 14).
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FIG. 16. (Color online) Cumulant function C(x) for the raw
dynamical spin susceptibility spectral data. The slope of the fit
function for T/D = 10−8 is 1.991.

tested in the T � � and T � TK limits, respectively, but not
for high temperatures where there is too much uncertainty. It
also indicates that the raw dynamic information in the FDM
NRG approach for ω < T is not reliable. While this does
not appear to be an issue for spectral functions, where the
Padé approach produces what seems to be a reliable fit to
the available raw data, this is not the case for dynamical
susceptibilities where we observe incorrect slopes at low
frequencies.

IV. RESULTS FOR A CORRELATED-ELECTRONS
PROBLEM: HUBBARD MODEL WITHIN THE DMFT

We apply the Padé approximant approach to determine the
spectral function of the Hubbard model in the paramagnetic
phase within the DMFT. The questions of main interest are
the following: (i) can we extend the upper limit of the tem-
perature range where the DMFT(NRG) method can be safely
applied towards T ∼ D or even beyond? (ii) Can we obtain
more detailed information about the internal structure of the
Hubbard bands? (iii) Is the problem of causality violation at
lower temperatures reduced?

We use the Bethe lattice with the noninteracting Green’s
function

G0(z) = 2

D

[
z

D
− isgn (Imz)

√
1 − z2

D2

]
. (60)

The DOS of the Bethe lattice shares some features with the 3D
cubic lattice DOS. For instance, at the band edges it has square
root singularities. The calculations are performed with Nz = 8
and we take advantage of the Broyden mixing to improve the
convergence.

We first discuss the half-filled system, 〈n〉 = 1, which
is particle-hole symmetric. The local spectral functions are
shown in Fig. 17 for two different temperatures. For low and
moderate interaction U , the behavior is qualitatively the same
as in the non-self-consistent SIAM. The Kondo resonance
at low frequencies is reinterpreted as the quasiparticle band
and there are two Hubbard bands that now exhibit some
internal structure, in particular, some enhancement at the inner
band edges, which has also been resolved previously in the
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FIG. 17. (Color online) Spectral functions of the particle-hole
symmetric Hubbard model at half-filling, 〈n〉 = 1, at temperatures
(a) T/D = 0.01 and (b) T/D = 0.1 for a range of repulsion strengths
U/D computed using the dynamical mean-field theory (DMFT). We
compare spectra computed using the Padé approach (solid lines) and
with broadening (dots). (Padé continuation is used in all steps of the
DMFT calculation, not just to obtain the final spectrum.)

broadening approach with very narrow kernels36 and is known
to be a real feature of the DOS;109,110 see, for example, the
U/D = 2.5 curve at T/D = 10−2 in Fig. 17.

The spectra at higher temperature, T/D = 10−1, are shown
in the lower panel of Fig. 17. For values of U approaching the
T = 0 Mott metal-insulator transition, the quasiparticle peak
is strongly suppressed and the spectral distribution inside the
Hubbard bands is modified (see U/D = 2 spectra). Broaden-
ing seems to underestimate the height of the quasiparticle peak
in this regime. For larger U/D = 2.5, the quasiparticle peak
is completely washed out and the Padé results suggest that
the Hubbard bands develop a pronounced three peak structure.
This is an artifact of the method and broadening results show
no such structure.

In Fig. 18, we explore more carefully the reliability of the
Padé approach in determining the internal structure of the
Hubbard bands. In Fig. 18(a), we show a low-temperature
result where the Padé approach at � = 2 suggests, in addition
to the well defined resonance at the inner band edge, also
some feature at the outer Hubbard band edge. By reducing the
discretization to � = 1.7, this feature is washed out, which
indicates that it was an NRG artifact. This is a general recipe:
real spectral features may be distinguished from artifacts
by changing the NRG parameters (such as �, truncation
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FIG. 18. (Color online) Spectral functions of the particle-hole
symmetric Hubbard model at half-filling for U/D = 2.5: dependence
on the NRG discretization parameter �. Dashed line show A(−ω)D.

cutoffs, etc.), whereby real features should remain robust,
while artifacts are very variable. This is well illustrated in
Fig. 18(b), where the results confirm that the three-peek
structure observed for U/D = 2.5 at higher temperature is
indeed an artifact.

We next consider a hole-dopped Mott insulator with 〈n〉 =
0.8 at U/D = 4, see Fig. 19. This same parameter set has
also been used in a recent study of the transport properties of
this model, see Ref. 111. For low temperatures, we find very
good agreement between broadening and Padé approaches
for the low-frequency part of the spectra, while at high
frequencies, the Padé approach reveals some internal structure
of the upper Hubbard band, which can only be obtained in
the broadening approach if the broadening parameter α is
much reduced. We note, however, that the integrated difference
between two sequential Green’s function in the DMFT loop
does not go to zero in the Padé approach but rather oscillates
around 10−6. This lack of true convergence can be shown to
originate precisely in the inner structure of the upper Hubbard
peak, which changes subtly from iteration to iteration. Such
behavior is sometimes associated with physical instabilities of
the system that are not allowed for in the DMFT ansatz, but
may also here be an artifact. In any case, we believe that the
upper Hubbard band does have internal structure and differs
from simple noninteracting DOS.

We finally address the problems in the DMFT(NRG) at
low temperatures, which manifest as the violation of the
causality in the calculated self-energy functions, as discussed
in the introduction. The self-energy has different asymptotic
behavior than the hybridization function or the Green’s
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FIG. 19. (Color online) Spectral functions of the Hubbard model
describing a doped Mott insulator for a range of temperatures. We
show curves obtained by broadening (α = 0.2) and Padé approxima-
tion.

function, so special care must be taken when performing
continuation with Padé. For large frequencies, it behaves as70

�(z) ∼ U 〈n〉/2 + O(1/z). (61)

Because Padé requires O(1/z) asymptotic behavior, we first
subtract U 〈n〉/2, perform the continuation, and add the
subtracted value back to the result. It was believed that since the
self-energy is a ratio of two Green’s function and the real parts
need to be obtained by the Kramers-Kronig procedure, it was
supposed that the (over)broadening of the spectral functions
(imaginary parts) at high frequencies has an impact on all
frequency scales in the real parts, thus spoiling the causality.
This appears not to be the case, since in the Padé approximant
approach the problems begin to show at the same temperature
scale as with broadening. The causality violation thus appears
to be intrinsic to the self-energy trick in NRG (i.e., is present
already in the raw results). Interestingly, we did not observe

similar problems with the self-energy in calculations for the
SIAM, but only in self-consistent DMFT calculations.

V. CONCLUSION

We have analyzed a nonstandard approach for calculating
finite-temperature spectral functions using the full-density-
matrix numerical renormalization group (FDM NRG). It
consists of evaluating the Green’s function on the imaginary
frequency axis, either at the Matsubara frequencies iωn =
i(2n + 1)πT or at some other conveniently chosen set of
points. To obtain the spectral function on the real frequency
axis, an analytic continuation using the Padé approximant is
performed. The technique works well in conjunction with suf-
ficient z averaging, which partially removes the discretization
artifacts of the NRG. Compared with the broadening approach,
the technique does not have any arbitrariness in the choice of
the broadening kernel and the only free parameter in most
circumstances is the number of Matsubara points Nm; the
low-energy part of the spectral function converges quickly
with increasing Nm. In addition, unlike with broadening, the
spectral function does not have artifacts on the frequency scale
of ω ∼ T . Some artifacts in spectral functions appear on high
frequency scales and we have shown that their origin is in
the raw NRG data, not in the analytic continuation procedure
as such. A further advantage of the proposed technique is its
capability to resolve narrow spectral features away from the
Fermi level. We have also shown that the technique may be
applied at relatively low temperatures by choosing instead
of the Matsubara points a modified set of points on the
imaginary axis, which provides a good sampling of the spectral
information.

We have tested the method first on the single impurity
Anderson model, where we have compared results of the new
approach to the results obtained with broadening. We have
also tested the approach on the Hubbard model within the
DMFT. We find that the Padé approximant approach has some
advantages over the broadening: (i) it has less spectral-function
artifacts on the important scale of ω ∼ T and (ii) it can better
resolve the inner structure of the Hubbard bands.

The main drawback of the Padé approximant method are the
artifacts (e.g., complex spectra may give rise to additional spu-
rious peaks) which, however, can be systematically eliminated
by reducing � and increasing Nz. In addition, we find that
while the Padé approach works well for spectral functions,
it has more difficulties with reproducing correct slopes of
dynamical susceptibilities at finite temperatures (which is an
issue of NRG itself).

This work presents an alternative approach for obtaining
smooth finite-temperature spectral functions for discrete data
via Padé approximates, obviating the need to broaden discrete
spectral functions. A possible improvement of our approach
would be to build in as constraints additional information
about the spectral function, such as the spectral moments,
which are known with very high accuracy, and obtain the Padé
approximant using an optimization procedure. One could also
consider different fit functions. Work along these lines is in
progress.
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APPENDIX A: KONDO RESONANCE

We now discuss the shape of the Kondo resonance, which
is well known to deviate strongly from the Lorenzian form,
see Fig. 20. The behavior near ω = 0 is parabolic, as expected
for a regular FL system.1,8 The quadratic fit, however, is only
valid asymptotically for |ω| � TK . The fit to a Lorentzian
function is valid in a somewhat wider energy interval, but it
starts to deviate appreciably already at ω ∼ TK . The long tails
are better approximated by an inverse-square-root function
(also known as the Doniach-Šunjić form),21,112,113 as expected
from the orthogonality-catastrophe physics for the scattering
phase-shift π/2. The expression due to H. Frota is112

A(ω) = 1

π�

[
1 +

√
1 + (ω/�K )2

2[1 + (ω/�K )2]

]1/2

. (A1)

Using the local-moment approximation method, it has been
shown that the tails are asymptotically logarithmic.114,115

At finite temperatures, the Kondo resonance can again
be described by the Frota form using temperature-dependent
parameters. We write

A(ω,T ) = h(T )

π�

[
1 +

√
1 + [ω/�K (T )]2

2(1 + [ω/�K (T )]2)

]1/2

. (A2)

For the temperature-dependent height, we find

h(T ) = [1 + (21/s − 1)(rT /TK )p]−s , (A3)

with s = 0.29, p = 1.67, and r = 0.66, while for the width,
we obtain

�K (T ) = cTK [1 + a(T/TK )b], (A4)

with c = 0.60, a = 1.97, and b = 1.33. This expression
well describes the Kondo resonance in the parameter range
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FIG. 21. (Color online) (a) Kondo resonance height as a function
of temperature, calculated using broadening and Padé approximation.
(b) Spectra for a range of temperatures from T/TK = 10−2 to T/TK =
10 in 13 equally spaced temperatures in the logarithmic scale.

|ω| < 10TK and T < 10TK . Note that we do not fix p = 2, as
required for a FL system. The T → 0 asymptotic behavior is
thus incorrect. Our goal, however, is not the correct description
of the asymptotic behavior (for which exact results are known
anyway), but a better description on the crossover scale
T � TK , which is more important for fitting experimental data.

We test how well the Friedel sum rule π�A(ω = 0) = 1
for the particle-hole symmetric case is fulfilled in the low-
temperature limit. The results for π�A(ω = 0,T ) are shown
in Fig. 21 on the logarithmic temperature scale. The sum rule
at T → 0 is fulfilled within 0.0018 using the broadening
approach, and within 0.0019 using the Padé approximant.
The largest differences between the two approaches are in the
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FIG. 22. (Color online) Conductance G(T )/G0 of a quantum dot
described by the single-impurity Anderson model and a fit to the
phenomenological Goldhaber-Gordon et al. formula.
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intermediate temperature region where the height of the Kondo
resonance is systematically underestimated by broadening.

APPENDIX B: LINEAR CONDUCTANCE

We discuss an integrated spectral quantity, the conductance
through a nanoscopic device (quantum dot) described by the
SIAM, as given by the Meir-Wingreen formula:116

G(T ) = G0

∫ +∞

−∞
dω

(
− ∂f

∂ω

)
π�A(ω,T ), (B1)

where G0 = 2e2

h
is the conductance quantum, and f is the

Fermi-Dirac function. This quantity can be computed directly
from raw spectral data, or using the continuous spectral
function obtain either by broadening or by Padé method.
We find that the results agree very well in all three cases,
see Fig. 22. We fit them on the phenomenological function
proposed by Goldhaber-Gordon et al.:44,54

G(T ) = G0[1 + (21/s − 1)(T/TK )p]−s . (B2)

Note that G(TK ) = G0/2, in agreement with our definition of
TK . As discussed above, in a FL system, one may choose to fix
p = 2 in order to obtain the expected T � TK asymptotics.
For broadened spectra, we find

TK = 4.4 × 10−3, s = 0.229, (B3)

while for Padé spectra

TK = 4.5 × 10−3, s = 0.227. (B4)

The fitting was performed in the interval from T/TK = 10−2

to 10. These values agree with the standard result s = 0.23.44

Again, by relaxing the constraint p = 2 a better fit is obtained
in the intermediate temperature region where the crossover
occurs. In this case, we find for broadened spectra,

TK = 4.5 × 10−3, s = 0.277, p = 1.74, (B5)

while for Padé spectra,

TK = 4.6 × 10−3, s = 0.279, p = 1.72. (B6)

Essentially, the same fit parameters are obtained if G(T ) is
computed directly by integrating the raw spectral data.
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59N. Néel, J. Kröger, L. Limot, K. Palotas, W. A. Hofer, and

R. Berndt, Phys. Rev. Lett. 98, 016801 (2007).
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