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We consider a doped Mott insulator in the large dimensionality limit within both the recently developed
extremely correlated Fermi liquid (ECFL) theory and the dynamical mean-field theory (DMFT). We show that
the general structure of the ECFL sheds light on the rich frequency dependence of the DMFT self-energy. Using
the leading Fermi liquid form of the two key auxiliary functions introduced in the ECFL theory, we obtain
an analytical ansatz, which provides a good quantitative description of the DMFT self-energy down to hole
doping level δ � 0.2. In particular, the deviation from Fermi liquid behavior and the corresponding particle-hole
asymmetry developing at a low-energy scale are well reproduced by this ansatz. The DMFT being exact at
large dimensionality, our study also provides a benchmark of the ECFL in this limit. We find that the main
features of the self-energy and spectral line shape are well reproduced by the ECFL calculations in the O(λ2)
minimal scheme, for not too low doping level δ � 0.3. The DMFT calculations reported here are performed
using a state-of-the-art numerical renormalization-group impurity solver, which yields accurate results down to
an unprecedentedly small doping level δ � 0.001.
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I. INTRODUCTION

Strong electronic correlations constitute one of the major
challenges in condensed-matter physics and continue to inspire
new theoretical approaches. In search for novel functionalities,
new materials are being synthesized on a regular basis,
giving the field a steady impetus. Significant progress in the
understanding of electronic correlations has been achieved
from the dynamical mean-field theory (DMFT), in which the
self-energy is assumed to be momentum independent (see
Ref. 1 for a review). This theory becomes exact in the limit of
infinite dimensionality.

The situation in low dimensions has further challenges
relating to the k dependence of the self-energy, and thus
new methods for strongly correlated electrons continue to be
developed. One promising approach is Shastry’s extremely
correlated Fermi liquid theory (ECFL), developed in a recent
series of papers.2–5 This theory starts from the infinite-U
limit and is based on the Schwinger equation of motion for
Gutzwiller projected electrons, these noncanonical objects
requiring special attention. The theory leads to a set of
analytical expressions that are in principle exact. So far,
solutions of the second-order expansion of these expressions
in a partial projection parameter λ are available. They can be
obtained for any lattice by an iterative process analogous to the
skeleton diagram method. The ECFL theory expressions have
been successfully applied to account for the angle resolved
photoemission spectroscopy (ARPES) line shapes of cuprate
superconductors6,7 in the normal state.

In this work, we perform a comparative study of these
two methods. We use as a test bed the single-band doped
Hubbard model at strong coupling U , in the limit of large

dimensionality. This limit leads to simplifications in the ECFL
theory, which we introduce here (the details of the formalism
are provided elsewhere8). The comparison focuses on the
frequency dependence of the self-energy and single-particle
spectral line shapes, and their evolution as the Mott insulator is
approached by reducing the doping level δ [defined in Eq. (5)].

The first outcome of the present work is that, by looking
at the DMFT results within an ECFL perspective, we are able
to obtain new analytical insights into the DMFT description
of the doping-driven Mott transition. Within the DMFT, the
single-particle self-energy �(ω) displays a rich and complex
frequency dependence. This has been known for some time
(see, e.g., Ref. 9 for a recent study), but is further investigated
in the present work down to unprecedentedly low doping levels
δ � 0.001 using a state-of-the-art numerical renormalization
group (NRG) solution of the DMFT equations. Local Fermi
liquid behavior Im� ∝ ω2 + (πT )2 is obeyed only below a
very low energy scale. Above this energy scale, a marked
particle-hole asymmetry develops, a feature that is beyond
the Fermi liquid theory. Furthermore, the strong suppression
of spectral weight in the intermediate range of energies
separating the quasiparticle peak from the lower Hubbard band
corresponds to a marked quasipole in the self-energy.

We show that all of these features can be well reproduced
by constructing an analytical ansatz for the one-particle self-
energy, which is directly motivated by the ECFL construction.
The ECFL introduces two key quantities, � and χ , which
play the role of auxiliary self-energies in the Schwinger
construction. The proposed analytical ansatz is obtained by
retaining only the dominant Fermi liquid terms in the low-
frequency expansion of these auxiliary quantities. This is
found to provide a satisfactory fit of the DMFT results for
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doping levels δ � 0.2. Hence, quite remarkably, the marked
deviations from Fermi liquid behavior, and the particle-hole
asymmetry in the physical single-particle self-energy, can be
accounted for by an underlying Fermi liquid form of the ECFL
auxiliary quantities. For very large U , and especially for very
small doping levels, additional structures appear in the DMFT
results, which are not present in this simplest ECFL ansatz, and
presumably require additional terms beyond the Fermi liquid
ones in the auxiliary functions � and χ .

Another synergistic outcome of our study is that, because
the DMFT provides an exact solution in the limit of large
dimensionality, it can be used to benchmark the ECFL in this
limit. We present here quantitative results obtained within
the minimal scheme implementation of the ECFL in high
dimensions,8 giving rise to an expansion to order λ2 in the
projection parameter λ. We find that the main features of the
self-energy and the spectral line shape are well reproduced
by the O(λ2) ECFL calculations, on a semiquantitative level,
for not too low doping δ � 0.3. Improvement will require
further developments of the ECFL approach. Since the DMFT
is able to handle any finite U , while the ECFL construction
is motivated by the very large U limit, this comparison also
sheds light on the adiabatic connection between the regime of
moderate and extreme correlations.

We emphasize that ECFL can be used on two different
levels. On one level, it provides a functional form for the
physical Green’s function and the corresponding self-energy
in terms of the auxiliary ECFL self-energies �(ω) and χ (ω).
By assuming the simplest Fermi liquid form for these two
self-energies over a certain frequency range centered around
ω = 0, we successfully fit the physical self-energy obtained
through DMFT in this frequency range for δ � 0.2. This is
remarkable since the frequency range used is substantially
larger than the characteristic frequency at which the physical
self-energy begins to deviate from Fermi liquid behavior, and
even encompasses the quasipole in the physical self-energy
at negative frequencies. This phenomenological approach to
ECFL is the one used in the first five sections of the paper, and
the results of this fit are displayed in Figs. 8, 9, and 10. On the
second level, ECFL provides a microscopic theory by which
one can obtain concrete results for � and χ via an expansion
in the projection parameter λ. In the remainder of the paper,
the results obtained from the O(λ2) theory are benchmarked
against the results obtained from DMFT, which are exact in the
limit of infinite dimensions. In the long run, further combined
use of the ECFL and the DMFT approaches could lead to
a better understanding of the momentum dependence of the
self-energy that becomes important in lower dimensions.

The paper is organized as follows. After defining the model
in Sec. II, the general structure of the ECFL formalism is
reviewed in Sec. III. In Sec. IV, we present detailed DMFT
results for the hole-doped Hubbard model using high-precision
Wilson’s NRG as a solver. In Sec. V, the DMFT self-energies
are interpreted in light of the ECFL-motivated analytical
expressions. The second part of the paper is devoted to the
O(λ2) ECFL minimal implementation. The basic equations
and their simplification in infinite dimensions are established
in Sec. VI, and in Sec. VII a quantitative comparison is made
to the DMFT results.

II. MODEL

We study the Hubbard model defined by the Hamiltonian

H =
∑
kσ

εkc
†
kσ ckσ + U

∑
i

ni↑ni↓, (1)

where εk is the bare band dispersion relation obtained by
Fourier transforming the hopping matrix. In this study we
consider a doped Hubbard model with nearest-neighbor
hopping on a Bethe lattice, with semicircular density of states:

ρ0(ε) = 2

πD2

√
D2 − ε2, (2)

where D is the half bandwidth, and thus any sum over the band
energy can be converted to an integral as:

1

N

∑
k

A(εk) →
∫ D

−D

dε ρ0(ε)A(ε). (3)

We note that the Fermi energy εF satisfies

sin−1

(
εF

D

)
+

(
εF

D

)√
1 −

(
εF

D

)2

= −π

2
(1 − n), (4)

and vanishes near n ∼ 1 as εF = −π
4 (1 − n) D. The hole dop-

ing level δ is related to the particle density n (n = N/Nsites) as:

δ = 1 − n. (5)

We will use ρQ(ω) as a shorthand notation for the spectral
function associated with any relevant quantity Q(iωn)
(Green’s function, self-energy):

ρQ(ω) = − 1

π
Im[Q(ω + i0+)]. (6)

III. ECFL: GENERAL FRAMEWORK

A. ECFL formalism

The ECFL methodology has been discussed extensively in
recent literature;2,3 here we highlight only the aspects that
are of relevance to this work. ECFL deals with Gutzwiller-
projected states obtained in the limit of U → ∞, with
the no-double-occupancy constraint built into the electron
operators, leading to the well-known t-J model. This results
in a noncanonical theory, where familiar Feynman diagram
methods fail due to the absence of Wick’s theorem. The ECFL
formalism is an exact alternative to the Feynman diagram
technique. Instead it works with the Schwinger equations of
motion for the projected electrons. It provides results for the
electronic Green’s functions that describe the physics of the
low-energy sector in the problem, namely the dynamics of
the quasiparticle (QP) states near the Fermi energy and of the
lower Hubbard band (LHB).

For our purposes, we need to express the ECFL theory in
the large-dimensionality limit. The related technical problems
outlined in Ref. 10 (paragraph 3) have been recently solved8

by analyzing the infinite-dimensional limit of the Schwinger
equations of motion in the ECFL.11

The exact mapping of the momentum-independent self-
energy of the infinite-dimensional Hubbard model onto that
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of a self-consistent Anderson impurity model12 provides a
roadmap for a suitable formulation of the ECFL equations in
this limit.

In the simplest version of the ECFL theory,13 the physical
(i.e., projected) electronic Green’s function is expressed as a
product of an auxiliary Green’s function g(k) and a caparison
term denoted in the present work as μ̃(k). Thus,

G(k) = μ̃(k) × g(k), (7)

where k ≡ (
k,iωk) and ωk is a fermionic Matsubara frequency.
Here g(k) is a Fermi liquidlike Green’s function

g−1(k) = iωk + μ −
(

1 − n

2

)
εk − �(k), (8)

and μ is the chemical potential. The factor μ̃(k) (here
distinguished from the chemical potential μ by the tilde), plays
the role of an adaptive spectral weight, and is given by

μ̃(k) = 1 − n

2
+ �(k), (9)

with �(k) vanishing at infinite frequency. The functions �(k)
and �(k) are the twin self-energies in the theory, and are
exactly defined as the appropriate functional derivatives of g−1

and μ̃ respectively.2,3 The term μ̃(k) is termed the caparison
(i.e., dressing) factor, since it provides a second layer of
renormalization to the propagator g, which is already dressed
by �. Both Green’s functions satisfy an identical number sum
rule

∑
k,ωk

G(k) = n
2 = ∑

k,ωk
g(k); this enables us to satisfy

the Luttinger-Ward volume theorem.
In the large-d limit, a further simplification can be

established:8 � is independent of 
k and � is decomposable
into two 
k-independent functions,

�(k) = �(iωk), (10)

�(k) = χ (iωk) + εk�(iωk), (11)

i.e., the two frequency-dependent (but 
k-independent) func-
tions χ and � determine the Green’s function.

The single-electron physical (Dyson) self-energy � is
defined from the single-electron Green’s function G in the
usual manner, as (using the analytic continuation iωk →
ω + iη, η = 0+):

G(k,ω + iη) = 1

ω + iη + μ − εk − �(ω + iη)
. (12)

Within the large-dimensional ECFL, the Dyson self-energy �

can be related to � and χ as follows:

�(ω + iη) − μ − ω = χ (ω + iη) − μ − ω

1 − n
2 + �(ω + iη)

. (13)

We see that the Dyson self-energy is manifestly momentum
independent in this limit. Note also that, as seen from (13),
its real part grows linearly with ω as ω → ∞. This is a
consequence14 of the Gutzwiller projection in the U → ∞
limit. At finite U , this behavior is regularized at high-enough
frequency and � goes to a constant.

For a concrete implementation, the ECFL formalism al-
lows for a perturbative expansion in a projection parameter
λ ∈ [0,1], ultimately identified with the double-occupancy

density.3 The theory to O(λ2) is expected to be quantitatively
accurate for densities up to n � 0.7.15 We postpone the
description of these equations to Sec. VI, but note an important
general insight gained from examining and evaluating such an
expansion2,3,15; the two self-energies χ and � have simple
Fermi liquid functional forms, with a dissipative part that is
quadratic in ω, at sufficiently low energies (see Fig. 11 in
Sec. VI). This insight is used in the following to obtain a
low-energy expansion for the Green’s function.

B. Low-frequency expansion of self-energies
and Green’s functions

In this section we derive the low-frequency behavior of
the Green’s function and self-energy within the ECFL. We
obtain an analytical expression, which will be used to interpret
and fit the DMFT results in Sec. V. We show in particular
how a characteristic particle-hole asymmetry in the Dyson
self-energy is generated even when the expansion of Imχ and
Im� is limited to the particle-hole symmetric lowest-order
Fermi liquid terms.

Indeed, as mentioned above, the first few terms of a
systematic λ expansion of the ECFL equations indicate that the
self-energies � and χ are very similar functions and resemble
the self-energy of a Fermi liquid at low enough T ,ω, with
suitable scale constants.

For low ω and low T , up to a low-frequency cutoff scale
�c, so that |ω| � �c � D, we define (with kB = 1)

R(ω,T ) ≡ π [ω2 + (πT )2], (14)

and write a Fermi liquidlike expansion for the complex ECFL
self-energies:

�(ω) ∼ �0 + c� ω + i

γ�

R(ω,T ) + �rem(ω), (15)

χ (ω) ∼ χ0 − cχ ω − i

�χ

R(ω,T ) + χrem(ω), (16)

where

c� = 2
�c

γ�

and cχ = 2
�c

�χ

. (17)

�χ and γ� are parameters that determine the curvatures of
the two imaginary parts, with �χ having the dimensions
of energy, while γ� has the dimensions of the square of
energy. Consequently, c� has the dimensions of an inverse
energy, while cχ is dimensionless. The terms �rem(ω) and
χrem(ω) in Eq. (15) represent the remainders containing the
leading corrections to the Fermi liquid behavior, of the type
O(ω2) for the real part and O(ω3) for the imaginary parts
of these functions. In the initial analysis below, we simply
ignore these terms. They can be readily incorporated to find
a systematic improvement of the fits, and lead to further
corrections to the low-frequency behavior of the imaginary
part of the Dyson self-energy beyond the terms considered
here. Note that in Eq. (17) the constants c� and cχ also
receive contributions from higher terms beyond the quadratic.
Hence these approximate relations become exact if we retain
the imaginary terms only to quadratic order, i.e., assuming
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ρ� ≡ −R(ω,T )
πγ�

and ρχ ≡ R(ω,T )
π�χ

. In general, however, c� and
cχ can be considered as additional free parameters.

Some further remarks about this expansion are called for.
(i) Expressions (15) and (16) are of the standard Fermi

liquid type (symmetric in ω for the imaginary parts). Nonethe-
less, when processed through the ECFL formalism, they lead to
important contributions to the imaginary part of the Dysonian
self-energy which are antisymmetric in ω. Revealing the origin
of this important asymmetry is one of the main strengths of
the ECFL analysis.

(ii) We shall find that as we approach half filling, �χ and
γ� turn out to be similar functions of the electron density, in
view of their parallel role in the two self-energies within the λ

expansion. In the analysis below, we will find that as n → 1, it
is consistent to choose �χ,γ� ∼ δ, where δ = 1 − n, so that
the Mott insulating limit is reached smoothly.

(iii) The energy scale �c, which determines the range of
frequencies where the quadratic behavior of Im � and Im χ

applies, is itself a function of the density. It shrinks linearly
with δ as n → 1, and therefore c� and cχ are finite as n → 1.
We should note that these are leading-order assumptions in δ.

Thus we find at low T ,ω:

G(k,ω + iη)

∼
α0 + c� ω + i

γ�
R

ω(1 + cχ ) + μ + i
�χ

R − εk{α0 + c� ω + i
γ�
R} ,

(18)

where we have introduced

α0 ≡ 1 − n

2
+ �0, (19)

and χ0 has been absorbed into the chemical potential μ. The
entire momentum dependence is contained in εk . At T = 0
and ω = 0 we must require G−1(kF ,0) = 0, so we need to set

μ = α0 εF . (20)

At low ω + iη and a fixed 
k, we can write a useful
expression

G−1 ∼ −εk +
ω(1 + cχ ) + α0 εF + i

�χ
R

α0 + c� ω + i
γ�
R

(21)

and therefore

�(ω + iη) ∼ α0 εF + ω −
ω(1 + cχ ) + α0 εF + i

�χ
R

α0 + c� ω + i
γ�
R

.

(22)
Note that we adjusted the self-energy so that Re �(0) =
μ − εF , thereby placing the zero-energy pole at the Fermi mo-
mentum. We now extract the wave-function renormalization
factor Z from Z−1 = ∂

∂ω
G−1(k,ω)|ω=0 as

Z = α0

1 + cχ − εF c�

. (23)

Using the above expansion we find the spectral function
ρG(k,ω) [or equivalently A(k,ω), as denoted in the experimen-
tal literature], at low ω and k ∼ kF

A(k,ω) ∼
(

α0
2

π��

) R
(
1 − ω

�

)
{(1 + cχ − c� εk)ω − α0(εk − εF )}2 + {

α0
2R2/�2

�

} , (24)

where

�� ≡ α0
�χγ�

γ� − εF �χ

, (25)

� ≡ α0
2 γ��χ

��{(1 + cχ )�χ − c�γ�} . (26)

In terms of the wave-function renormalization factor Z,

A(k,ω)∼
(

Z2

π��

) R
(
1 − ω

�

)
{ω − Z(εk − εF )}2 + {

Z2R2/�2
�

} . (27)

We thus obtain the following final form for the low-energy expression of the Dysonian self-energy:

Im�(ω) ∼ − R
��

1 − ω
�

{1 + ω c�/α0}2 + R2/(α0γ�)2
,

Re�(ω) ∼ α0εF + ω

−{εF + ω(1 + cχ )/α0}(1 + ωc� /α0) + R2/(α0
2�χγ�)

{1 + ω c�/α0}2 + R2/(α0γ�)2
, (28)

where we recall that R(ω,T ) is defined in Eq. (14). These
expressions, and in particular that of Im�, are among the key

results of the present paper, and will be used below in order to
fit and interpret the DMFT data.
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If we take the �rem and χrem terms in Eq. (15) and Eq. (16)
into account, then Eq. (28) receives higher-order polynomial
corrections in ω in both the numerator and denominator. Let
us also note that Eq. (27) is of the form of a phenomenological
version of the ECFL theory that has been recently tested against
experimental data with considerable success, in some cases
after adding a constant times (εk − εF ) in the numerator.2,6,7

C. Low-doping limit n → 1

At T = 0 and near half filling we get εF = −π
4 δD from

Eq. (4). Further, from the single assumption that �0 = − n
2 near

half filling,16 we find that the self-energy and wave function
renormalization factor scale correctly with δ as δ → 0. This
assumption gives α0 = δ, and a scaling of various energy
scales with δ. In particular, we find from the equations that
�χ ∼ γ� ∼ �c ∼ δ. This, together with Eq. (17), leads to
c� ∼ O(1) and cχ ∼ O(1). This is consistent with the scaling
behavior described in remarks (ii) and (iii) in the previous
section. Keeping the dominant terms in Eqs. (23), (25), and
(26), we find that

Z = α0

1 + cχ

, (29)

�� = α0 �χ, (30)

� = α0 γ�

{(1 + cχ )�χ − c�γ�} . (31)

Near half filling (δ → 0), we define

Z = δ Z, (32)

�� = δ2 ��, (33)

� ≡ δ �. (34)

All objects with an overline, such as Q, are determined
to be finite as δ → 0. Eq. (32) is expected on general
grounds near the insulating limit: to leading order G−1(k,ω) =
εF − εk + ω

Z
+ O(ω2), and therefore the propagating solutions

correspond to quasiparticles with an energy dispersion Z(εk −
εF ) that shrinks to zero at the insulating point n = 1. We find
here that this occurs as a linear function of δ. Eq. (33), together
with Eq. (28), implies that at small ω ∼ O(δ), the imaginary
part of the self-energy has a finite value. Further combined
with a cutoff �c ∼ O(δ), it gives Re � ∼ ω − 2ω �c

��
, which

is then consistent with the linear vanishing of Z in Eq. (32).
Equation (34) shows that the particle-hole asymmetry in the
spectral function increases as we approach half filling. Finally,
we see that the spectral density Im� becomes a scaling
function of ω/δ at low doping levels.

IV. DOPED MOTT INSULATOR: SINGLE-SITE DMFT

The dynamical mean-field theory1 is based on the fact17

that in the limit of a large number of dimensions d the
self-energy becomes a momentum-independent local quantity,
�(k,ω) → �(ω). This implies that the bulk problem for

d → ∞ coincides with the problem of an interacting impurity
embedded in an appropriate noninteracting bath.12 DMFT
formulates a practical prescription for finding this effective
impurity problem and the self-consistency equation. For the
Hubbard model, the corresponding impurity problem is the
single-impurity Anderson model, which can be efficiently
solved with the numerical-renormalization group (NRG)
method.18–22

A. NRG method

The NRG calculations have been performed with the dis-
cretization parameter � = 2 using the discretization scheme
with reduced systematic artifacts described in Ref. 22. Further-
more, the twist averaging over Nz = 8 different discretization
meshes has been used to reduce the oscillatory NRG discretiza-
tion artifacts.23 The truncation cutoff in the NRG was set
in the energy space at 10ωN (here ωN is the characteristic
energy at the N th NRG step); such results are well converged
with respect to the truncation. The U(1) charge conservation
and SU(2) spin rotational invariance symmetries have been
used explicitly. The raw spectral data (weighted δ peaks)
were collected in bins on a logarithmic mesh with 1000
bins per frequency decade, then the broadening scheme from
Ref. 24 with α = 0.2 has been used to obtain the continuous
representation of the spectral functions. To calculate the
self-energy �, we have used the procedure25 based on the
following exact relation from equations of motion:

�σ (z) = 〈〈[dσ ,Hint]; d†
σ 〉〉z

〈〈dσ ; d†
σ 〉〉z

= U 〈〈nσ̄ dσ ; d†
σ 〉〉z

〈〈dσ ; d†
σ 〉〉z

. (35)

Here dσ is the impurity annihilation operator, while Hint is
the interaction part of the Hamiltonian. The two correlators in
this expression were computed using the full-density-matrix
NRG algorithm.24,26 To accelerate the convergence of the
DMFT self-consistency loop, the Broyden mixing algorithm
has been used.27 This technique is particularly important to
ensure the convergence at small doping as the Mott transition is
approached. The Broyden solver has been used both to control
the chemical potential to obtain the desired band filling and to
apply the DMFT self-consistency equations.27

When performing the calculations in the large-U limit, it
is important to note that the upper Hubbard band (UHB) is
outside the NRG discretization energy window. The correlator
Fσ (z) = 〈〈nσ̄ dσ ; d†

σ 〉〉z receives a contribution

FUHB(z) = wUHB

z − (εd + U )
−→
U→∞

wUHB

−U
(36)

from the UHB, where wUHB is the total weight of the upper
Hubbard band, which in the U → ∞ limit is equal to n/2. The
correlator F (z) in Eq. (35) is multiplied by a factor U , thus
the UHB contribution to the numerator in the U → ∞ limit
is equal to −wUHB. It is crucial to correct the raw numerical
results by making this subtraction when the UHB is outside the
discretization window, otherwise the causality is very strongly
violated. [No such subtraction is necessary for the correlator
Gσ (z) = 〈〈dσ ; d†

σ 〉〉z, because the UHB only makes an O(1/U )
contribution to the denominator.]
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An analysis of the convergence of the NRG results with
respect to the variation of various parameters in the method is
presented in Appendix B.

B. DMFT results

1. Scaling of quasiparticle weight Z vs doping level δ

In this work, we only consider paramagnetic solutions. At
low temperatures, the DMFT equations, depending on the
strength of the interaction U and the doping δ, give either
an insulating or a metallic Fermi liquid state. The key quantity
characterizing the metallic state is the quasiparticle residue

Z =
(

1 − ∂Re�(ω)

∂ω

∣∣∣∣
ω=0

)−1

. (37)

At δ = 0 (half-filled system), a metallic solution is found for
U < Uc (this critical value of U is often denoted Uc2 in the
DMFT literature—the spinodal of the metallic solution1—
and will be denoted Uc here for simplicity). For U > Uc, the
DMFT equations only have a unique insulating solution. At
Uc/D = 2.918, a Mott metal-insulator transition takes place,
with characteristics similar to the Brinkman-Rice picture28 in
that the quasiparticle weight Z vanishes continuously and the
quasiparticle effective mass diverges.

Away from half filling, i.e., for any δ �= 0, the solution
is always metallic (Z > 0); the Mott insulator (Z = 0) only
exists exactly at half filling (for U > Uc1, the spinodal of the
insulator).1 As δ → 0 for U > Uc, Z diminishes and vanishes
at δ = 0. This doping-driven Mott transition is illustrated in
Fig. 1. In Figs. 1(a)–1(d) we plot the results of Z vs δ for a set
of values of U . It is seen that, when considered over a broad
doping range δ � 0.5 [Figs. 1(a) and 1(b)], the overall doping
dependence of Z is fairly linear at intermediate values of U/D,
while at strong coupling (large U/D) a marked curvature
is seen (approximately fit by a power-law with exponent
close to 1.4).

A plot of Z/δ vs δ focusing on the low-doping region
[Figs. 1(c) and 1(d)] reveals, however, that the asymptotic
low-δ behavior is actually linear, Z ∝ δ (except close to the
multicritical point U = Uc,δ = 0 where sizable corrections
are found). This is indeed the behavior expected within the
Gutzwiller approach28–30: Figures 1(c)–1(d) thus confirm that
DMFT obeys this mean-field behavior. The prefactor of this
linear dependence is also decreasing with U in reasonable
agreement with the Gutzwiller estimate30 ∼(1 − Uc/U )−1/2.
Note that the results displayed here extend previous studies
to much lower doping levels (δ � 0.001) than previously
reported in the literature, due to the improvements in the NRG
methodology.

2. Self-energy and spectral function: overview
of the main structures

We now address the properties of the self-energy �(ω) and
one-particle spectral function in more detail.

An overview plot in Fig. 2(a) shows the main features
in the local spectral function A(ω) and in the imaginary
part of �(ω) in a broad frequency range. Im� has two
very pronounced and sharp resonances (quasipoles). These
resonances are responsible for the suppression of the spectral

weight in A(ω) between the QP peak and the LHB and UHB,
respectively. They are correspondingly positioned close to the
minima of A(ω). In contrast to the half-filled case, where
these resonances are symmetrically positioned on each side
of ω = 0 at a scale31 ∝ ±√

Z, their locations in the doped
case are no longer symmetric and will be discussed below. In
addition, there are two broad humps in Im� in the frequency
ranges associated with the two Hubbard bands. As U increases
towards very large values at fixed doping, the UHB moves to
higher frequencies, while the LHB and QP band gradually
converge to their high-U asymptotic form. This convergence
is, however, rather slow and the spectra start to very closely
agree with the asymptotic ones only for U on the order of
100D.

In Fig. 2(b) we plot a closeup on the low-energy structures,
i.e., the QP band and its vicinity. We notice that the Fermi
liquid quadratic behavior of Im� is limited to a very narrow
frequency interval, much smaller than the width of the QP
peak itself. We also see (Fig. 2 and Fig. 5) that at low doping
level, Im� develops a marked particle-hole asymmetry. These
deviations to Fermi liquid behavior are discussed below in a
more quantitative manner.

One of the goals of this work is to provide an analytical
account of the complex frequency dependence of the self-
energy that we just summarized. It should be kept in mind
that the ECFL theory that we are going to use for this purpose
works with the U = ∞ model, which begins by throwing out
the UHB altogether and deals only with the LHB. Thus the
comparison carried out later in this paper refers only to
the LHB and QP sector (no double occupancies), containing
the interesting low-energy physics of the problem.

3. Dynamical particle-hole asymmetry

The local spectral function and self-energy are displayed on
Fig. 3 for U = ∞, at two different doping levels (a small and
large one, for comparison). An immediately apparent feature
of these plots is the large asymmetry between holelike (ω < 0)
and particlelike (ω > 0) excitations.

Indeed, for ω < 0, |Im�| increases rapidly from ω = 0
in order to connect with the negative-energy quasipole. The
detailed form of this increase is somewhat different depending
on the doping level. At large doping it is approximately
parabolic, in continuity with the low-ω FL ∼ ω2 dependence.
In contrast, at small doping, the low-ω parabolic dependence
evolves into a more linearlike increase at higher frequency.
The local spectral function also displays an almost complete
suppression of the spectral weight between the QP peak and
the LHB at low doping level, while this suppression is only
modest at higher doping.

In contrast, for ω > 0, |Im�| rapidly flattens out after
its initial FL increase. It has a plateaulike behavior with
a broad maximum at large and intermediate doping level
(the maximum is sharper at smaller doping). Overall, |Im�|
remains much smaller at ω > 0 than at ω < 0.

This asymmetry also reflects into the QP peak in the local
spectral function A(ω), i.e., the local ρG(ω), which has a very
asymmetric line shape. The decrease from its ω = 0 value
A(0) is much faster on the ω < 0 side, in accordance with the
large |Im�|. The detailed form of the line shape on the more
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FIG. 1. (Color online) Doping-driven Mott transition within the DMFT: approach to the Mott insulating state for U > Uc = 2.918D with
decreasing doping δ. Top panels: doping dependence of Z for a range of δ on a lin-lin (a) and on a log-log (b) plot. The dashed line is a fit to a
power-law function Z = δα with α = 1.39. Bottom panels: Z/δ vs δ(c), and Z/δ vs δ on a log-log plot (d).

extended ω > 0 side is different at lower and higher doping
levels, with a convex and concave shape, respectively.

Finally, the particle-hole asymmetry has a very distinctive
signature in the momentum-resolved spectra A(ε,ω), which
are displayed in Fig. 4. It is seen there that the dispersion
of the QP peak deviates from its low-energy form ωQP =
Z(ε − εF ) much more rapidly on the ω > 0 side, where a
stronger dispersion closer to that of the bare band is rapidly
found. This is mostly due to the distinct behavior of the real
part Re� for positive and negative frequencies (shown later
in Fig. 6). This finding, which is also supported by the ECFL
results as discussed below, is one of the main predictions of
our work. It calls for the development of momentum-resolved
spectroscopies for unoccupied states (the dark side that is not
directly accessible to ARPES). The physical significance of
this dark side has also been recently pointed out in cluster-
DMFT studies of the two-dimensional Hubbard model.32

4. ω/Z scaling

Close to the Mott transition, all low-frequency properties
are expected to scale with Z, i.e., be described by scaling
functions1,33,34 of ω/Z. This is indeed the case, as demon-
strated in Fig. 5 in which good data collapse is obtained in the
lowest frequency range when plotted vs. ω/Z. However, we
also clearly observe that the scaling is limited to the asymptotic
region of very small frequencies.

On Figs. 5(b) and 5(c), one can compare the evolution of
the shape of the local spectral function, discussed above, as

a function of the doping level. One sees that the QP peak
becomes increasingly asymmetric at very low doping. We also
observe that the LHB has some internal structure, quite similar
to that observed at half filling as the correlation-driven Mott
transition is approached from the metallic side.22,35–37

In Fig. 6, the real and imaginary part of the self-energy are
plotted against ω/δD. The different panels cover different
frequency ranges. While a better collapse of the different
curves at very low frequency was obtained above when using
ω/ZD as a scaling variable, it is seen from the plots in
a broader frequency range that the overall structures of the
self-energy obey rather good scaling properties with respect
to ω/δD. For example, the sharp peak (quasipole) structure
at ω < 0 in Im� is seen to be located at a frequency
proportional to doping level (ωpeak � −0.7δD). This peak in
Im� is associated with the suppression of the spectral weight
between the QP peak and the LHB in the spectral function.
Correspondingly, it is associated with a resonancelike structure
in Re�.

5. Deviation from the low-frequency Fermi liquid behavior

From Figs. 6(b), (c) (for Re�) and 6(e), (f) (for Im�), one
can visualize the low-frequency deviations from Fermi liquid
behavior. The latter is indicated by the dashed straight and
parabolic lines on this figure: Re� − Re�(0) = ω(1 − 1/Z)
and Im� ∝ −(ω/Z)2.

When visualized on an intermediate frequency scale
[Figs. 6(b) and 6(e)] it is seen that deviation from the FL
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R. ŽITKO et al. PHYSICAL REVIEW B 88, 235132 (2013)

0
0.1
0.2
0.3
0.4
0.5
0.6

A
( ω

)D

-3 -2 -1 0 1 2 3 4 5

1

2

-I
m

 Σ
( ω

)/D
U/D=4, δ=0.02

max at 211max at 19

(a)

(b)

FIG. 2. (Color online) (a) Overview plot showing the full struc-
ture of spectra on high-frequency scales (lower Hubbard band,
quasiparticle band, upper Hubbard band) at finite U = 4D. We show
the DMFT local spectral function (top panel) and the imaginary part
of the self-energy (bottom panel). (b) Closeup on the quasiparticle
band at low frequencies.

behavior is more apparent on the ω > 0 side, in accordance
with the particle-hole asymmetry discussed above and as
pointed out in previous studies.9,38 Re� deviates from linearity
and flattens upwards for ω > 0, resulting in the bending of the
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FIG. 3. Local spectral function and the imaginary part of the
self-energy for large doping δ = 0.2 (left) and small doping δ = 0.005
(right), for U = ∞.

FIG. 4. (Color online) Intensity plots of the momentum (εk-)
resolved spectral function A(ε,ω) for U = ∞ at four different doping
levels, plotted as a function of ε/D and ω/ZD. The plain line locates
the solution of the QP pole equation ω + μ − Re�(ω) − ε = 0
(neglecting Im�). By definition of the QP excitations, this line has
slope unity (cf. dashed line) at low-ω when plotted in this manner
since ωQP = Z(ε − εF ) (i.e., v�

F = ZvF ) within the DMFT.

dispersion of ω > 0 quasiparticles towards the noninteracting
bare dispersion, displayed above on Fig. 4. Accordingly, the
deviations from parabolic behavior in Im�(ω) are much more
pronounced on the positive frequency side.

Zooming further on the low-frequency range [Figs. 6(c) and
6(f)] allows one to locate more quantitatively the deviation
from the FL behavior. At U = ∞, it is seen to occur at ω�

FL �
0.1 ZD, which is of order 0.025δD to 0.05δD depending on δ.
In agreement with previous studies9 at finite U , the scale below
which FL is found to apply is seen to be a very low one. It is
one order of magnitude smaller than the Brinkman-Rice scale
≈δD, which corresponds to scaling the bare bandwidth by the
(inverse) of the effective mass. When converted to a tempera-
ture scale, the Brinkman-Rice scale roughly corresponds to the
temperature at which QP excitations disappear altogether (and
the resistivity approaches the Mott-Ioffe-Regel limit),9 but it
should not be identified with the much lower scale associated
with deviations from FL behavior.

The low-frequency zooms in Figs. 6(c) and 6(f) actually
reveal that the deviations from FL behavior are seen both on
the ω < 0 and ω > 0 side, at similar scales ±ω�

FL. This scale
corresponds to a low-energy kink in Re�. The corresponding
low-energy kink in the QP dispersion39–41 is actually visible
upon close examination of Fig. 4.

As seen on Figs. 5(b) and 5(c), the full collapse of the data is
limited to very low frequencies. Two kinds of deviations from
the universal behavior can be recognized. On the negative
frequency side, at moderate doping the deviations occur at the
onset of the Hubbard band as the quasiparticle peak is not
clearly separated from the LHB. On the positive frequency
side, the different curves deviate from each other also in the
small doping limit. Comparing the two lowest dopings, for
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FIG. 5. (Color online) (a) Imaginary part of the self-energy �

versus the rescaled frequency ω/Z for U = ∞. (b), (c) Corresponding
local spectral functions. Note that when plotted vs ω/Z, the peak
related to the onset of the LHB moves to the left with diminishing
δ, as seen in (b). The results for finite U are qualitatively very
similar. The arrows indicate the direction of the increasing value of δ.
(d) Quasiparticle weight as a function of Z.

instance, reveals the excess of the spectral weight for the
lower doping curve. This suggests that the quasiparticle peak is
not fully characterized by the renormalization factor Z alone:
the quasiparticle peak weight Wq.p. and Z are not necessarily
simply proportional. This question is best addressed at very
low doping, when the quasiparticle peak is well separated
from the LHB. We can then extract Wq.p. by integrating the
spectral function between the two local minima in A(ω). The
results are plotted in Fig. 5(d). We find that at low δ, Wq.p.

and Z are related by a power-law Wq.p. = Zγ , with γ close
to one, but not exactly 1. More specifically, γ is found to be
U dependent: γ = 1.017 for U = 3, γ = 1.039 for U = 4,
γ = 1.049 for U = 10, and γ = 1.067 for U = ∞.

6. Charge compressibility: absence of phase separation

For some types of the (noninteracting) conduction-band
density of states, there can be phase separation near half
filling.42 We verify that this is not the case for the Bethe
lattice by plotting the band filling n as a function of the
chemical potential μ in Fig. 7(a) for U = ∞. The dependence
is monotonous, thus all solutions are physically stable with
positive charge compressibility κ = ∂n/∂μ. We also plot the
quasiparticle residue Z as a function of the chemical potential
μ [Fig. 7(b)]. The charge compressibility κ as a function of
the band filling [Fig. 7(c)] has a maximum near quarter filling.
For smaller n, the decrease is due to the particular form of
the non-interacting DOS (semicircular function). For larger
n, κ drops to zero as the Mott transition is approached. The
asymptotic behavior is a power law δβ with β ≈ 1/5.

V. DOPED MOTT INSULATOR: AN ECFL PERSPECTIVE
ON THE DMFT

In this section we make use of the general structure of
the self-energy resulting from the ECFL in order to interpret,
fit, and better understand the complex frequency dependence
of the DMFT self-energies. The emphasis will be on the
intermediate frequency range, which encompasses both the
vicinity of ω = 0 and of the quasipole (sharp peak) in Im�

on the negative frequency side at ωpeak � −0.7δD. We focus
on intermediate doping levels, which turns out to be the range
where the ECFL applies best, rather than on very low doping.
For these reasons, we can use as a scaling variable:

x ≡ ω/δ (38)

A. ECFL line shapes: main features

The low-frequency ECFL analysis from Sec. II gives a sim-
ple expression, Eq. (28), for Im� at T = 0. Using the overline
convention of Eqs. (32), (33), and (34) to denote variables that
remain finite as δ → 0, e.g., P = P/δ, we rewrite Eq. (28) as

Im� = − x2

�1

1 − x/�1

(1 + x/�2)2 + x4/�
2
2

. (39)

This ansatz function is determined by two variables with the
meaning of curvature �1,2 that are simply related to �� and
γ� , respectively, and by two parameters, which adjust the
asymmetry �1,2 that are related to � and cψ .

The numerator of the expression describes a parabolic
dependence, with a cubic correction term. This ansatz function
has a peak (quasipole) at frequency x = −�2 for a finite
�2, turning into a true pole when �2 → ∞. The low-
frequency asymmetry of the self-energy, important for the
low-temperature thermoelectric properties, arises through a
combination of the terms present in the numerator and
denominator. Expanded to cubic order in frequency, the ansatz
gives

Im� = −x2/�1[1 − (1/�1 + 2/�2)x]. (40)
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FIG. 6. (Color online) Real and imaginary parts of the DMFT self-energy �(ω) for a range of doping for U = ∞, as a function of ω/δD

(left and center) or as a function of ω/ZD (right). The arrows indicate the direction of the increasing value of δ. The linear (for real parts) and
parabolic (for imaginary parts) are performed in the frequency range [−0.05 : 0.05]δD. In (f), the data is vertically offset for clarity.

The ansatz function and its evolution as the parameters are
varied is illustrated in Fig. 8.

Summarizing, the ansatz function Eq. (39) contains a
parabolic dependence, multiplied by a function with a sharp
peak at negative frequencies; therefore, it can be expected to
describe the coarse structure found in the DMFT very well
already at this order including only the Fermi liquid structure
of the underlying functions � and χ .

B. ECFL fits of the DMFT self-energy

The DMFT results for U = ∞ self-energy for a range of
doping levels are presented in Fig. 9 together with fits to
Eq. (39). At large doping, the ansatz function describes the
DMFT data remarkably well: the low-frequency dependence
and the main shape of the self-energy are fully reproduced.

At smaller doping, the quasipole at negative frequencies
becomes very sharp and Im� in DMFT develops a nipplelike
structure at low-frequency, with semilinear frequency depen-
dence at negative frequencies. These two features (quasipole
and nipple) cannot be simultaneously well described by
the simplest ECFL ansatz function in a broad frequency
range. Given that the ansatz has a structure that already
contains the pole, the fits in a broad frequency window are
more meaningful. The DMFT data can still be described
successfully, but terms beyond the lowest-order Fermi liquid
form in � and χ need to be retained. Work along these lines

to reproduce the precise shape and to analyze its physical
contents should be possible.

The evolution with doping of the fitting parameters is
shown in Fig. 10. The first observation is that the fitting
parameters (except for �1 to be discussed below) do not
depend substantially on the doping, hence validating our
assumptions stated above.

The second observation is that �1 is usually found to be very
close to �2. This supports the conclusions of the λ2 analysis
(to be discussed in the next section), which also finds that γ�

is close to �χ .
The third observation is that the bulk of the asymmetry does

actually not come from the explicitly cubic term (parametrized
by 1/�1), but rather from 1/�2. Hence, it is the presence of
the quasipole at negative frequency that is responsible for the
strong particle-hole asymmetry. This is seen most explicitly
in the doping range δ = 0.2–0.3, where 1/�1 almost vanishes
and where, furthermore, the data is excellently described by
the ansatz function from Eq. (39). The physical content of
this observation might be that the low-frequency particle-hole
asymmetry is (at least at not too low dopings) directly related
to the presence of the LHB at much higher frequency scales,
and thus ultimately to the strong-correlation physics. This
observation is consistent with the picture emerging from
the ECFL, where the asymmetry is a consequence of the
Gutzwiller projection.
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FIG. 8. (Color online) Role of the parameters in the ECFL ansatz
function, Eq. (39), used for fitting in Figs. 9 and 10.

C. Summary

To summarize, the ECFL-derived ansatz, Eq. (39), which
retains only the lowest-order Fermi liquid terms in � and
χ , describes the rather complex frequency dependence of the
DMFT data remarkably well at low to intermediate frequencies
and for not too small doping levels. Importantly, retaining
only the Fermi liquid (hence particle-hole symmetric) terms in
these ECFL self-energies already yields a marked particle-hole
asymmetry in the physical electron Dysonian self-energy.
The ansatz also describes the pole at negative frequencies,
associated with the onset of the LHB. Whereas the Fermi
liquid behavior only applies at extremely low frequencies
in the Dysonian self-energy, the Fermi liquid concepts can
still be used over a much broader frequency range when
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FIG. 9. (Color online) Im�(ω) vs rescaled frequency ω/δD and
fits to Eq. (39) for U = ∞. The ansatz describes the DMFT self-
energy at moderate dopings remarkably well. The nipple structure that
becomes pronounced at small doping signals that χ and � develop
non-Fermi liquid corrections.

proper auxiliary quantities are considered, within the broader
framework provided, e.g., by the ECFL theory. At lower
doping levels, however, the DMFT results display structures
(nipple), which signal the increasing importance of corrections
beyond the dominant Fermi liquid terms in �,χ .

VI. ECFL: EXPANSION TO O(λ2)

A. Summary of equations

We now summarize the results of the O(λ2) expansion of
the ECFL equations in Ref. 8, which are then computed and
compared with the DMFT results. We note that the ECFL
reformulation of the Dyson self-energy �(ω) into the ECFL
auxiliary self-energies �(ω) and χ (ω) is exact. Therefore, if
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FIG. 10. (Color online) Parameters in the fit function, Eq. (39),
for a range of doping δ at U = ∞. For a broad fitting energy range,
the fitting parameters are smooth as a function of δ, thus the fitting
procedure is well defined. At dopings where the fits work best (that
is around δ = 0.25), �1 is found to be close to �2.
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one could perform the λ expansion to infinite order in λ, one
would obtain the exact answer for these auxiliary self-energies,
and consequently the Dyson self-energy. The resulting Dyson
self-energy would then agree exactly with the one obtained
through DMFT for the case of infinite U. Our aim here is
to benchmark the lowest nontrivial order of the λ expansion
against the exact DMFT results. Note that in the d → ∞ limit,
in the paramagnetic phase, the single-particle properties of the
t-J model are identical to those of the U = ∞ Hubbard model.
In other words, as long as antiferromagnetic correlations are
short ranged, J does not enter single-particle properties in the
d = ∞ limit. Accordingly, the only coupling constant entering
the simplified ECFL equations is the hopping (band dispersion)
itself, and not the superexchange.

In the O(λ2) scheme, the explicit density factors 1 − n
2 that

occur in Eq. (8) and (9) are replaced by the rule

1 − n

2
→ aG ≡ 1 − λ

n

2
+ λ2 n2

4
+ O(λ3). (41)

The second rule is that the explicit self-energy expressions in
these equations are multiplied by λ. As an illustration of these
rules, we write Eq. (8) and (9) as

g−1(k) = iω + μ − aG εk − λ�(k), (42)

μ̃(k) = aG + λ �(k). (43)

The factor λ is set to 1 before actually computing with these
formulas. The two self-energy functions �(k) and �(k) satisfy
the equations to second order in λ:

�(iωk) = −λ
∑
pq

(εp + εq − u0)g(p)g(q)g(p + q − k),

�(k) =
(

εk − u0

2

)
�(iωk) + χ (iωk) − u0

(
λ

n2

8
− n

2

)
−

∑
p

εpg(p)

χ (iωk) = −λ
∑
pq

(
εp+q−k − u0

2

)
(εp + εq − u0)

×g(p)g(q)g(p + q − k). (44)

All equations in Eq. (44) are implicitly understood to have
O(λ3) corrections, so that the g and μ̃ pieces of G in Eq. (7)
are correct to the stated order. As expected, the functions
�,χ depend on the frequency but not the momentum 
k.
Both Green’s functions satisfy an identical number sum
rule

∑
k,ωn

G(k) = n
2 = ∑

k,ωn
g(k), and the theory has two

chemical potentials necessary to impose these, namely μ and
u0. As discussed in Ref. 3, the second chemical potential u0

arises from the requirement of satisfying a shift invariance
in the theory. The shift transformation in the present model
acts as εp → εp + c. This transformation shifts the center
of gravity of the band; it is absorbable in u0, and thus
rendered inconsequential. We can easily verify that χ and �

are independently shift invariant. Combining the expressions,

we write

μ′ ≡ μ + u0

(
λ2 n2

8
− λ

n

2

)
− u0

2
aG + λ

∑
p

εpg(p),

(45)

g−1(k) = iω + μ′ −
(

εk − u0

2

)
{aG + λ�(iωk)} − λχ (iωk).

The Green’s function is then found by combining Eqs. (45),
(44), and (43) in the expression Eq. (7).

B. Setting up the computation

To set up the computation, we write a local Green’s function
with weight m = 0,1, . . . using Eq. (45) as

gloc,m(iωk) ≡
∑


k
g(k) (ε
k)m

=
∫ D

−D

dε ρ0(ε)
εm

iω + μ′ − (aG + �)
(
ε − u0

2

) − χ
, (46)

where χ and � are functions of frequency iωk but not the
energy ε. We find that both gloc,0 and gloc,1 are needed to
compute the frequency-dependent self-energy. Similarly, a
local G can be defined, and the number sum rules can be
written as n

2 = ∑
iω gloc,0(iω) and n

2 = ∑
iω Gloc,0(iω). Where

necessary, the usual convergence factor eiω0+
is inserted. The

two 
k-independent functions � and χ in Eq. (44) can be written
in a compact way if we first define a function with three indices
(m1m2m3) from the weight factors:

Im1m2m3 (iω) = − 1

β2

∑
ν1,ν2

gloc,m1 (iν1)

×gloc,m2 (iν2)gloc,m3 (iν1 + iν2 − iω). (47)

After continuation iω → ω + iη, and for all values of the
indices, the low frequency and temperature I (iω) is a
Fermi liquid-like self-energy with an imaginary part ∝ [ω2 +
(πkBT )2]. We can now rewrite Eq. (44) as:

�(iω) = −u0I000(iω) + 2I010(iω)

χ (iω) = −u0

2
�(iω) − u0I001 + 2I011(iω). (48)

Clearly, Eqs. (48) and (46) along with the definition (47) and
the number sum rules form a self-consistent set of equations
that can be solved iteratively on a computer. The Dyson self-
energy and the spectral function can be computed in terms of
these quantities using Eq. (13)

C. Auxiliary and Dyson self-energies to O(λ2)

In Fig. 11 we present ρχ , ρψ , and ρ� (from top to bottom).
ρψ and ρχ have similar frequency dependence and a Fermi
liquid form is obeyed much more accurately than what is found
for the Dyson self-energy ρ� . This supports the ansatz that
we employed above. In particular, the auxiliary self-energies
are more particle-hole symmetric; most of the particle-hole
asymmetry follows from the structure of ECFL equations. This
signals that the Fermi liquid concept has validity outside of the
canonical Fermi liquid behavior.
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FIG. 11. (Color online) Imaginary parts (spectral densities) of
the auxiliary self-energies χ and �, and the Dyson self-energy
� within the O(λ2) ECFL. The dotted lines are parabolic fits at
the highest density. Recall that typical Fermi liquid-type spectral
functions exhibit a parabolic and therefore particle-hole symmetric
behavior over a large energy range. From these fits one observes that
the auxiliary functions � and χ have a Fermi liquid form over a wider
energy range than the Dyson self-energy �.

VII. DETAILED COMPARISON OF O(λ2) ECFL RESULTS
TO DMFT

A. Effective density of the ECFL spectral functions and its
phenomenological adjustment

The O(λ2) equations of ECFL discussed here give a high-
ω limiting behavior G ∼ aG

ω
, differing from the exact form

G ∼ 1− n
2

ω
due to the replacement 1 − n

2 → aG ≡ 1 − λn/2 +
λ2n2/4 as per the rules of the calculation. This effect is due

to the incomplete projection of the O(λ2) treatment of the
ECFL equation of motion. At n ∼ 0.75 the error in the high-
frequency weight is 22.5%.

A phenomenological scheme for adjusting for this feature
defines an effective density neff , using the ratio of particle
addition and removal states as the relevant metric, so that

n
1−n+n2/4 = neff

1−neff
, thus yielding

neff = n

1 + n2

4

. (49)

Clearly higher-order calculations would have a corresponding
mapping between the two densities. For several of the
comparisons below, agreement is greatly improved by plotting
the results of ECFL as a function of neff .

B. Comparison between O(λ2)-ECFL and DMFT

We find that the computed values of the quasiparticle weight
Z from ECFL are close to the U/D = 4 DMFT curve, we
detail this in Appendix A, where the momentum distribution
is also shown. This is suggestive of an analogy between the two
incompletely projected theories. In particular, making U finite,
and truncating the λ expansion at second order, both introduce
some double occupancy into the system. It is therefore not
surprising that the U/D = 4 DMFT results agree better with
the O(λ2)-ECFL than with the U/D = ∞ DMFT results.
However the limitations of the O(λ2) calculation within ECFL
preclude obtaining reliable results for doping levels smaller
than δ ≈ 0.25.

1. Spectral line shapes

In Fig. 12 we compare the ECFL and the DMFT results at
U = 4D and U = ∞ for the ε-resolved spectral functions
at two values of the band energy, εk = −D and εk = εF .
In general, the agreement is encouraging. At εk = −D (left
panel), DMFT has a deeper minimum between the QP and
the secondary feature at high binding energy than is seen in
ECFL, but the position of the ECFL peaks agrees well with
that of the DMFT peaks. At εF (right panel) the QP are of
similar width but have different values of Z, as discussed
above. The background of width ∼D lies over essentially the
same frequency range for all three calculations, and has a
peak at ω = −0.5D, approximately the same position for each
data set. However, the height of the peak is less pronounced
for the ECFL than the DMFT. At positive frequencies the
spectral functions are in excellent agreement. Plotting the
spectral function as a function of the scaled frequency ω/ZD

improves the agreement in the position and width of the
quasiparticle, as illustrated in the more sensitive self-energy
curves in Fig. 13. We note that the scaled ECFL curves agree
well with the DMFT curves even for density n ∼ 0.8–0.9
for scaled frequency |ω| � 0.5DZ. We find this agreement
surprising in view of our criterion discussed above, placing
n ∼ 0.75 as the limiting density.

The physical spectral function A(ω), when displayed as
a color intensity plot using the scaled frequency ω/ZD

as in Fig. 14, further emphasizes this similarity. At this
level of description, the U = 4D DMFT curve and the
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FIG. 12. (Color online) Spectral functions within the DMFT (U = ∞ and U/D = 4) and ECFL at two typical energies ε = −D and
ε = εF , with n = 0.7 and T = 0.0025D. The location of the quasiparticle peak near ω ∼ 0 and the broad secondary peak for ω < 0 are
common to both calculations. While there are subtle differences, especially in the magnitudes of the secondary peaks, the main features of the
three calculations match at high and low frequency.

O(λ2) calculation look almost identical. In particular, as clear
from this figure, both theories indicate that the quasiparticle
peak becomes rapidly more dispersive as one moves to
positive energies, corresponding to unoccupied states (i.e.,

the effective Fermi velocity increases as compared to its
low-energy value and becomes closer to the band value). As
discussed above (Sec. IV, Fig. 4), this is one of the primary
common conclusions of both theories, which could be tested

FIG. 13. (Color online) Spectral function (imaginary part) of the Dyson self-energy � versus the scaled variable ω/(DZ) in the ECFL
theory at order λ2, and the DMFT at two values of U . The ECFL predicts a value of Z which is too large at low doping, and significant
U dependence creates differences between the U/D = 4 and U = ∞ results of the DMFT. Nonetheless, all three cases overlap well at low
frequencies when plotted against the scaled frequency. Surprisingly, this agreement survives to densities far beyond the expected range of the
current version of the ECFL.
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FIG. 14. (Color online) Physical spectral function A(ε,ω). From left to right: U = 4 DMFT, U = ∞ DMFT, and ECFL with n = 0.7 and
T/D = 0.0025. Hot colors represent high intensity, while darker blue represents low intensity. Noting from the left panel of Fig. 12 that the QP
band has a slightly different width in each calculation, we plot the spectral function here as a function of ω

DZ
. This brings the low-energy (QP)

features of the spectral function into impressive agreement, indicating that Z, rather than δ, is the fundamental energy scale of the extremely
correlated state.

in future experiments able to probe the unoccupied states in a
momentum-resolved manner.

In view of the remarkable similarity between the different
theories, as seen in Fig. 13 and Fig. 14, it appears that the
O(λ2) version of ECFL has the correct shape of the spectra
built into it, but requires a correction for a too large value
of the QP factor Z. This is the main conclusion of this work
regarding the benchmarking of the ECFL.

VIII. CONCLUSION AND PROSPECTS

In this work we have presented a detailed comparison
between the DMFT and the ECFL theories, applied to the
doped Hubbard model at large as well as infinite U , in
the limit of infinite dimensions (Bethe lattice with infinite
coordination).

Our approach here is twofold. On the one hand, we
have used the general structure of the Green’s function and
self-energy in the ECFL theory to obtain a useful analytical
ansatz, which reproduces quite well the rich and complex
frequency dependence of the DMFT self-energy at not too
low doping level. This ansatz relies on the lowest-order Fermi
liquid expansion of the two auxiliary ECFL self-energies �

and χ . Quite remarkably, the marked deviations from the
Fermi liquid form and the particle-hole asymmetry found in
the physical single-particle self-energy can be accounted for
by this underlying Fermi liquid form of auxiliary quantities.
In turn, the deviations observed between the DMFT results
and this lowest-order ansatz at lower doping levels emphasize
the need for corrections to FL behavior in �,χ within the
ECFL. This part of our study thus provides useful analytical
insights into the DMFT description of the doping-driven Mott
transition.

On the other hand, we have used the DMFT results (ob-
tained here with a high-accuracy NRG solver) as a benchmark
of the ECFL theory. Specifically, we have solved numerically
the O(λ2) ECFL equations, appropriately simplified in the
limit of large dimensions. For not too low doping levels,
where this O(λ2) scheme is applicable, we found that the
spectral properties agree well provided the comparison is
made as a function of the scaled frequency ω/ZD, with Z the

quasiparticle weight. A similar situation arises in comparing
the ECFL method for the Anderson impurity model, where
Z is rapidly suppressed as the Kondo limit is approached.43

This adjustment of the frequency scale compensates the known
weakness of the O(λ2) theory in obtaining Z quantitatively,
and enables, to some extent, a preview of the results of
the planned higher-order calculations in the ECFL projection
parameter λ.

From a physics point of view, we now summarize the most
significant insights provided by our study.

Doped Mott insulators are found to be characterized by
a marked particle-hole dynamical asymmetry, as empha-
sized in recent ECFL44 and DMFT9 studies. In the case
of hole doping, particlelike (ω > 0) excitations are longer
lived than holelike (ω < 0) ones, leading to more resilient
electronlike quasiparticles.9 This dynamical asymmetry has
physical implications for the spectral line shapes9,44 as well as
thermopower.9,45 The asymmetric terms in the low-frequency
expansion of the self-energy signal deviations from the Fermi
liquid theory, which are usually ignored in weak-coupling
studies. They become large at low hole doping and strong
coupling, as demonstrated here in considerable detail, thus
confirming the proposal made originally in Ref. 44.

Due to the importance of this asymmetry, we found that
the energy vs momentum dispersion of the quasiparticle state
quickly deviates on the ω > 0 side from its low-energy value
(associated with the renormalized effective Fermi velocity).
The deviation is towards a weaker dispersion, closer to
the bare band value. This is a prediction of both ECFL
and DMFT, which could be tested experimentally once
momentum-resolved spectroscopies are developed in order to
address unoccupied states (the dark side for photoemission).

Regarding ARPES line shapes, we also emphasize that
the recent successful comparison6,7 between the ECFL and
the experimental ARPES line shapes in the optimally doped
and overdoped cuprates along the nodal direction can just
as well be interpreted as the similar success of the DMFT
interpretation of these line shapes. The adjustment of the
momentum dependence of the caparison factor for different
systems in Refs. 6 and 7 hints at the importance of the
momentum dependence of the self-energy. This momentum
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dependence is already present in the ECFL in two dimensions,
and also emerges from cluster DMFT calculations.

Further comparison between the nature of the momentum
dependence in both theories is to be addressed in future work.
More generally, we believe that this work lays the foundation
of a useful program where the momentum-dependent self-
energies can be reliably computed and expressed in simple
analytic forms. While cluster DMFT methods can already
provide some answers to this important problem, the ECFL
theory readily treats low dimensions and the momentum
dependence. In order to get further solid results, the current
limitation of the ECFL to the somewhat overdoped regime
needs to be overcome. This limitation arises from the low order
of the expansion in λ, and brute-force higher-order calculations
in λ are planned. In this task, the insights gained from the
present comparison with DMFT, are invaluable.
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APPENDIX A: QUASIPARTICLE OCCUPATION
AND Zk IN THE O(λ2) ECFL

The momentum distribution function, Fig. 15, shows good
agreement with the DMFT at a density n = .7, and the
large spillover for k > kF is of the same scale in both sets
of calculation. Its importance in estimating the background
spectrum in ARPES is well known, so this is already a
reasonably reliable common result. It is also interesting that
at the Fermi momentum, the magnitude of the distribution
function is close to 1

2 in both calculations, as argued in the
literature.15,46

In Fig. 16 we compare the quasiparticle weight Z in ECFL
and DMFT. The O(λ2) ECFL result has some similarity
to the Gutzwiller approximation47 result 2δ/(1 + δ) in the
limited density range of validity. However it does not seem
to vanish in any obvious way, if we extrapolate by eye to
higher density n, highlighting its main weakness in the current
state of development, but plotted against the effective density
it becomes comparable to the U/D = 4 DMFT curve over a
limited range.

APPENDIX B: NRG IMPURITY SOLVER CONVERGENCE
AT SMALL DOPING

In order to obtain well-converged spectral functions using
the NRG impurity solver at low doping δ, several parameters in
the method need to be appropriately tuned. Their choice affects
both low-frequency and high-frequency parts of the spectral
functions. In addition, it significantly affects the numerical
requirements—both the duration of each NRG calculation and
the number of the DMFT cycles until self-consistency. Very
close to the Mott transition, obtaining fully converged results

FIG. 15. (Color online) Momentum occupation versus ε within
the DMFT at U/D = 4 (top) and the ECFL (bottom).

becomes computationally very expensive (several hundreds
of DMFT cycles) even with Broyden acceleration.22 In this
section, we explore the effects of different choices on the
quasiparticle residue Z (low-frequency property), Fig. 17, and
on the shape of the LHB (high-frequency property), Fig. 18.

We first explore the choice of the discretization scheme
(i.e., how the coefficients of the Wilson chain are computed
based from the input hybridization function). We compare the
discretization scheme (denoted as Z) proposed by R. Žitko
and Th. Pruschke in Ref. 22, which corrects the systematic
discretization errors near band edges present both in the
conventional discretization scheme (Y), Ref. 48, and in the
improved scheme by V. Campo and L. Oliveira (C), Ref. 49.
At low frequencies, one observes excellent overlap of the
results, as indicated in Fig. 17(a). This is in line with the
common wisdom that the NRG is a reliable method for
low-frequency properties, having good spectral resolution in
the vicinity of the Fermi level where the discretization grid
is condensed. For this reason, the choice of the discretization
scheme has little effect on Z. At high frequencies, however,
one can clearly observe the systematic artifacts present in
schemes Y and C: the LHB presents spurious (nonphysical)
structure at the outer edge, which is not present in the results
of scheme Z, see Fig. 18(a). Recent comparisons of the
NRG (using scheme Z) and continuous-time quantum Monte
Carlo at finite temperatures have established that the NRG
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FIG. 16. (Color online) Quasiparticle weight Z as a function of
hole doping δ (or δeff = 1 − neff , the effective hole doping) from
the O(λ2) version of ECFL, and from DMFT for various values
of U. More detailed DMFT results are in Fig. 1. The blue dashed
line represents Z = δ, the simplest U = ∞ slave-boson estimate,
as a guide to the eye. The dotted red line represents the Gutzwiller
approximation result Z = 2δ

1+δ
.

(using scheme Z) is, in fact, a rather reliable method also
for high-frequency/finite-temperature properties. On the other
hand, the NRG using schemes Y or C is expected to exhibit
more pronounced systematic errors at high frequencies and at
finite temperatures.

The second important choice concerns the value of the
discretization parameter �, which controls the coarseness of
the logarithmic grid. The standard choice is � = 2, which
is suitable to obtain well converged results at both low and
high frequencies, see Figs. 17(b) and 18(b). In fact, the results
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FIG. 17. (Color online) Quasiparticle residue Z for the U = ∞
Hubbard model as a function of doping δ. We compare the DMFT
results for different choices of the NRG impurity solver parameters.
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FIG. 18. (Color online) Lower Hubbard band part of the local
spectral function A(ω) for the U = ∞ Hubbard model at low doping,
δ = 0.01. In (a), the schemes C and Y produce spurious features
at the outer band edge and at ω = 0.3D (indicated by arrows). In
addition, the (expected) feature at the inner band edge at ω = 0.1D is
overemphasized in C and Y schemes. In (d), we note that the curves
for clipping values 10−7, 10−6, and 10−5 nearly overlap, while those
for � 10−4 exhibit some deviations.

do not change much even when going to somewhat higher
� = 2.5, while for � = 3 we start to observe some systematic
deviations at very low doping δ. We have also performed some
test calculations for smaller values � = 1.9,1.8,1.7; the results
differ little from those for � = 2 while being significantly
more computationally expensive to produce.

We now consider the broadening parameter α, which
controls how the raw spectral function in the form of a set of
weighted δ peaks is processed to obtain a smooth continuous
representation. Too small values lead to spurious oscillations,
too high values to overbroadening. These effects are nicely
illustrated by the results for the LHB part of the spectral
function in Fig. 18(c). The long high-frequency tail of the
LHB for increasing α is a clear overbroadening effect, while
the oscillatory features for α = 0.1 are a discretization artifact.
At low frequencies, the QP residue Z converges as α is
decreased, see Fig. 17(c). We find that for α � 0.1, the results
practically overlap, while for α = 0.2 (the value used for most
calculations in this work), the deviation from the asymptotic
value is of order one percent. For large values of broadening (as
commonly done in NRG calculations), Z is underestimated.
This is because the spectral weight is more spread around as
α increases, thus less weight remains in the QP peak. Based
on these results, we find that α = 0.2 is a good compromise.

Finally, we discuss a subtle issue, which becomes important
at very small dopings. The NRG discretization has difficulties
if in the hybridization function there are extended regions of
very low values. In particular, this leads to very slow approach
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to the self-consistency. For this reason, it is convenient to use
a small, but finite cutoff value for the hybridization function
to clip the input hybridization function to some minimum
value at all frequencies. It is important, however, to choose
this value so that the results are not perturbed. We find that
using too high cutoff leads to incorrect Z vs δ behavior at low
doping (a downturn), see Fig. 17(d). The effect is thus similar

to overbroadening, since the spectral weight shifts from the
quasiparticle peak to the region between the LHB and the QP
peak, where the clipping is applied (for small δ, where the
LHB and the QP peak no longer overlap, but rather the QP
becomes an isolated spectral peak in the gap). There is also
some effect of clipping on the LHB itself, Fig. 18(d). Again,
this effect is analogous to overbroadening.
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