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Fine structure of spectra in the antiferromagnetic phase of the Kondo lattice model
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We study the antiferromagnetic phase of the Kondo lattice model on bipartite lattices at half-filling using
the dynamical mean-field theory with numerical renormalization group as the impurity solver, focusing on
the detailed structure of the spectral function, self-energy, and optical conductivity. We discuss the deviations
from the simple hybridization picture, which adequately describes the overall band structure of the system
(four quasiparticle branches in the reduced Brillouin zone), but neglects all effects of the inelastic-scattering
processes. These lead to additional structure inside the bands, in particular asymmetric resonances or dips
that become more pronounced in the strong-coupling regime close to the antiferromagnet-paramagnetic Kondo
insulator quantum phase transition. These features, which we name “spin resonances,” appear generically in all
models where the f -orbital electrons are itinerant (large Fermi surface) and there is Néel antiferromagnetic order
(staggered magnetization), such as periodic Anderson model and Kondo lattice model with antiferromagnetic
Kondo coupling, but are absent in antiferromagnetic phases with localized f -orbital electrons (small Fermi
surface), such as the Kondo lattice model with ferromagnetic Kondo coupling. The origin of the spin resonances
is in the shifts of the resonance in the self-energy function in an order-parameter dependent way. We show that
with increasing temperature and external magnetic-field the spin resonances become suppressed at the same
time as the staggered magnetization is reduced. The optical conductivity σ (�) has a threshold associated with
the indirect gap, followed by a plateau of low conductivity and the main peak associated with the direct gap,
while the spin resonances are reflected as a secondary peak or a hump close to the main optical peak. This work
demonstrates the utility of high-spectral-resolution impurity solvers to study the dynamical properties of strongly
correlated fermion systems.
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I. INTRODUCTION

Heavy-fermion lanthanide and actinide materials have un-
usual properties which still lack a complete microscopic under-
standing despite many decades of continuous research [1,2].
Their name originates from the high effective mass enhance-
ment of their Fermi-liquid quasiparticles and they are notewor-
thy for phenomena such as unconventional (spin-mediated)
superconductivity, complex magnetism, huge thermopower,
and, in general, very rich phase diagrams. In some cases,
these materials have semiconducting or insulating properties
at low temperatures (Kondo insulators). Some well known
heavy-fermion compounds are Ce3Bi 4Pt 3, YbB12, CeNiSn,
SmB6, and CeRh2Si2 [3–8].

The minimal model for this class of systems, the Kondo
lattice model (KLM), qualitatively describes many crucial
features of real materials in the low-temperature limit. It
consists of a lattice of local moments (representing the 4f

or 5f orbitals) coupled to the conduction-band electrons
(spd bands) through the on-site exchange coupling J. At
high temperatures, the f electrons act as nearly free spins,
while the itinerant electrons are effectively decoupled, thus
the material behaves as a conventional metal. Upon cooling,
however, the itinerant electrons tend to screen the localized
moments, a process known in quantum impurity physics as
the Kondo effect [9]. The lattice version of the Kondo effect
leads to a coherent state which is a strongly renormalized
Fermi liquid with the f states included in the Fermi volume
(“large Fermi surface” ground state). This can also be viewed
as the hybridization between the conduction band and the now

itinerant f levels. Exactly at half-filling, the chemical potential
lies inside the gap between the resulting effective bands, and
the system is insulating, while at finite doping the chemical
potential lies in a part of the band with very flat dispersion,
giving rise to the heavy-fermion behavior. The hybridization
manifests as a resonance in the self-energy function for the
conduction-band electrons,

�(z) = Ṽ 2/(z − ε̃f ),

where Ṽ is the renormalized hybridization and ε̃f the renor-
malized f -orbital energy.

Despite its simplicity, the KLM has a complex phase
diagram that is not fully unraveled yet even within approximate
approaches such as the dynamical mean-field theory (DMFT)
at the single-site level. On a bipartite lattice at half-filling
(that is, for exactly one conduction-band electron per lattice
site), the system is an antiferromagnet for J < Jc and a
paramagnet for J > Jc; in both cases it is an insulator. This
quantum phase transition results from the competition between
the lattice RKKY interaction and the Kondo effect [10]. In
the antiferromagnetic DMFT solution, the local moments
are itinerant for all values of J and they never decouple
from the conduction band (i.e., there is no itinerant-localized
transition when the system turns antiferromagnetic) [11], thus
Kondo physics actually plays an important role throughout
the antiferromagnetic (AFM) phase, too. This is revealed
by the fact that in the AFM state the hybridization resonance
in the self-energy function persists; it simply becomes shifted
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in a spin- and sublattice-dependent manner as the staggered
magnetization is established.

In this work, we study the cross-over from the weak-
coupling (band/Slater antiferromagnet) to the strong-coupling
(Kondo antiferromagnet) regime, focusing on the detailed
structure of the self-energy function �(z) and other dynamic
quantities. We find an interesting fine structure in the spectral
functions revealed by accurate numerical renormalization
group (NRG) calculations. In the momentum-resolved spectral
functions, we observe that the hybridized bands are not truly
degenerate at the band center and that the local (momentum-
integrated) spectral function exhibits narrow features (“spin
resonances”) inside the bands. They become more pronounced
in the strong-coupling Kondo antiferromagnet, where they
can be easily distinguished from the gap edges. The spin
resonances are universal: they appear for different lattice
densities of states (Gaussian, Bethe lattice, 2D and 3D cubic),
in high-spin extensions of the KLM, and in the periodic
Anderson model (PAM), which is another paradigmatic model
for heavy-fermion compounds. They decrease in amplitude as
the temperature is increased and disappear at the thermal AFM-
PM phase transition, thus they are a direct manifestation of the
staggered magnetization in the system. They are observable
in optical conductivity as a high-frequency hump or even as a
distinct peak in some parameter ranges.

The origin of the fine structure in the spectra can be
explained as follows. The Néel order with staggered magneti-
zation leads to cell doubling and folding of the quasiparticle
bands in the reciprocal space. At half-filling, this would result
in the degeneracy of the renormalized bands exactly in the
center of the noninteracting band at εk = 0. The exchange
coupling of the conduction band electrons with the localized
f levels, however, not only induces effective hybridization
(which is a coherent lattice effect), but it also leads to some
incoherent scattering at finite excitation energies, as described
by the nonzero imaginary part of the self-energy. This leads
to spectral features that in the momentum-resolved spectral
function appear like an avoided crossing or an enhancement
near the degeneracy point, and in the local spectra as dips or
resonances. This additional spectral structure due to inelastic
scattering is self-consistently stabilizied by the DMFT loop.
From a mathematical point of view, the self-energy function
can be modeled using an ansatz with a single dominant
hybridization pole that is shifted away from the real axis (i.e.,
a resonance rather than a delta peak). In addition, the effective
staggered field in the hybridization picture is found not to be
exactly the same for c and f bands; physically, this can also
be understood as an inexact quasilocal compensation [11].

In this picture, the observed spin resonances are due
to additional inelastic effects, which inevitably accompany
the coherent processes responsible for the formation of the
weakly-dispersive quasiparticle bands that are characteristic
of the heavy-fermion systems. The presence of inelastic
scattering is namely mandated by causality (Kramers-Kronig
relations). The resonance structures are thus quite generic
and expected to occur also in other situations where a
large-Fermi-surface paramagnetic Fermi liquid undergoes a
phase transition to an ordered state, which preserves the
poles/resonances in the self-energy, but shifts them on the
real axis in proportion to the order parameter.

This paper is organized as follows. In Sec. II, we describe
the Kondo lattice model and the DMFT(NRG) method. In
Sec. III, we study the analytical properties of the DMFT
equations for the long-range-ordered antiferromagnetic phase
with A/B sublattice structure (Néel state) and the typical
spectral features resulting from a phenomenological ansatz
for the self-energy functions featuring a single hybridization
resonance with spin-dependent parameters. This is followed in
Sec. IV by the presentation of the results of numerical DMFT
calculations, including the dependence of the spin resonance
on the Kondo coupling, temperature, and external magnetic
field. In Sec. V, we then discuss fits of �(ω) to the ansatz
functions and provide an interpretation in terms of elastic and
inelastic scattering.

II. MODEL AND METHOD

The simplest model that describes the basic physics of
heavy fermions is the Kondo lattice model [10,12]. It consists
of a noninteracting spd band that is coupled at each lattice
site to an immobile quantum-mechanical spin representing an
f -orbital electron. The corresponding Hamiltonian is

H =
∑
kσ

εkc
†
σ cσ + J

∑
i

Si · si

+
∑

i

(gcμBBsi,x + gf μBBSi,x). (1)

Here, εk is the dispersion relation for the noninteracting
conduction-band (c) states,

si =
∑
σσ ′

c
†
iσ

(
1

2
τ σσ ′

)
ciσ ′ (2)

(with τ as Pauli matrices) is the spin of the itinerant electron
at site i, Si is the quantum-mechanical spin operator of the
localized f moment (S = 1/2, unless noted otherwise), and
J > 0 is the antiferromagnetic Kondo exchange coupling.
We choose the magnetic field to be oriented along the x

axis, since at weak fields it generates a transverse staggered
magnetization, which we orient along the z axis; gc and gf are
the g factors, μB is the Bohr magneton.

Most results shown are computed for the Bethe lattice,
which has semicircular density of states

ρ0(ε) = 2

πD

√
1 − (ε/D)2, (3)

where D is the half-bandwidth. Different lattice types are
considered in Sec. IV F. We focus on the half-filling case,
〈n〉 = 1.

We study the lattice model with the dynamical mean-
field theory [13], an approximation consisting in taking
the self-energy to be local, �(k,ω) → �(ω). The KLM
is then mapped to an effective impurity problem subject
to self-consistency equations that relate the impurity bath
hybridization function to the self-energy. We iteratively solve
the impurity problem using the NRG method [9,14,15].
The spectral functions are computed using the full-density-
matrix NRG approach [16,17] with a discretization scheme
that allows for improved spectral resolution at high energy
scales [18]. Compared to prior DMFT(NRG) works [19,20],
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our calculations are performed with significantly reduced
spectral broadening, thus sharp features away from Fermi
level are much better resolved. We use an NRG discretization
parameter 	 = 2 with Nz = 8 interpenetrating meshes for
the z averaging [21] and the method to directly calculate
the self-energy introduced by R. Bulla et al. [22]. The
spectral function broadening parameter was 0.25 in most
calculations [17]. To allow for the antiferromagnetic phase,
a bipartite lattice (α ∈ {A,B}) is used. In the presence of the
magnetic field, at each DMFT iteration we perform two NRG
calculations, one for each sublattice: the two subproblems
are independent, because this is still a single-site DMFT
approximation with no inter-sub-lattice correlations. Both
sublattice self-energies then enter the DMFT self-consistency
equations. We assume no spin symmetry, as we have to allow
for components of the magnetization that are perpendicular to
the magnetic field (there is both uniform magnetization along
the external field and staggered magnetization perpendicular
to the field). All quantities (spectral functions, self-energies,
hybridization functions) become full 2 × 2 matrices and the
NRG calculations become numerically demanding and time
consuming (see Appendix for the derivation and more details).
We stop the DMFT iteration once the absolute integrated
difference between local lattice Green’s functions becomes
smaller than 10−4. In the absence of external magnetic field,
the DMFT iteration to the AFM solution is rapid and no
Broyden mixing is necessary to stabilize it (although it
accelerates the convergence) [23]. When Broyden mixing is
used, it is necessary to shift the initial density of states in a
spin-dependent way for the two sublattices in order to induce
the symmetry breaking to the AFM phase. Some minimal
shift is necessary, otherwise the Broyden solver converges to
a metastable solution that is nearly paramagnetic with some
spin-dependent artifacts.

The NRG approach for computing the self-energy as a ratio
of two correlators [15,22] does not automatically guarantee
causality; this issue appears to be intrinsic to the method rather
than being due to the spectral broadening procedure [24]. In
order to preserve the causality in the DFMT loop, in the spin-
diagonal case (no magnetic field), we clip the imaginary part of
�σ (ω) to be negative at all frequencies. In a generic case (finite
fields), the procedure is applied to the self-energy matrix and
consists of two steps. First, the diagonal elements are clipped
to

Im�σσ (ω) < −δ, (4)

where δ is a clipping parameter, typically chosen to be 10−4

or less. In the next step, the out-of-diagonal parts are clipped
by the requirement

|Im�σσ̄ | <
√

Im�↑↑Im�↓↓, (5)

which ensures that the matrix Im� is negative definite and
therefore the self-energy causal. The real part of the self-energy
is not modified. This procedure works well in practice and the
converged results do not depend on the particular value chosen
for the clipping parameter δ.

There are many numerical methods that can reliably
determine the phase boundaries and various static quantities,
but much less is known about the dynamic quantities, such as

the spectral functions. The most widely used DMFT(QMC)
technique (i.e., the DMFT using Quantum Monte Carlo as the
impurity solver) is formulated on the imaginary frequency axis
and requires resorting to an ill-posed analytical continuation
to obtain the final real-frequency results. This leads to
uncertainties and difficulties in resolving fine details in the
spectral functions. For example, to the best of our knowledge,
the spin-polaron structure of the Hubbard model has not yet
been obtained using the DMFT(QMC), but is resolved nicely
with exact diagonalization or high-resolution NRG as the
impurity solver [25]. Detailed features in optical conductivity
are also very difficult to obtain using analytical continuation.

In the paramagnetic phase, we formulate the DMFT self-
consistency loop for the Kondo lattice by taking as the basic
unit one conduction band c site and one spin. The effective
quantum impurity model then takes the form of an Anderson
impurity model (in the limit of no interaction, U → 0) with
a side-coupled spin. In this case, the self-energy function for
the c site, which we denote �, fully describes the effect of
the exchange coupling with the local moment. This is not the
only possible DMFT mapping: there is another representation
where the impurity model is the Kondo model. The advantage
of our approach is that the self-energy can be easily computed
in the NRG approach using the self-energy trick, and that
the DMFT self-consistency equation takes a simple form (the
same as for the Hubbard model):

�(z) = z + μ − [
G−1

loc(z) + �(z)
]
, (6)

where �(z) is the hybridization function used as the input to
the impurity solver, μ is the chemical potential, and G−1

loc is the
local (k-averaged) lattice Green’s function, defined through

Gloc(z) = 1

N

∑
k

1

z + μ − εk − �(z)

=
∫

ρ0(ε)dε

[z + μ − �(z)] − ε

= G0[z + μ − �(z)]. (7)

Here, ρ0(ε) is the density of states for the noninteracting con-
duction band, while G0(z) is the corresponding noninteracting
Green’s function. Solving the impurity problem with the NRG
is equally costly for both possible DMFT mappings.

In the paramagnetic Kondo insulator at half-filling, the
dominant feature in the self-energy function is a pole [1]:

�(z) = Ṽ 2

z
, (8)

where Ṽ can be interpreted as the renormalized hybridization
between the c and f bands in the hybridization picture for the
periodic Anderson model. This generates an indirect spectral
gap approximately given by

� ≈ Ṽ 2

D
. (9)

The optical conductivity σ (�) remains low at frequencies
above 2� until the main peak occurs for � ≈ 2ω∗, where
ω∗ is the direct gap that corresponds to the frequency where
the quasiparticle band in the momentum-resolved spectral
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function crosses the εk = 0 line [26]. It is thus defined through

ω∗ = Re�(ω∗), (10)

which then leads to

ω∗ ≈ Ṽ . (11)

A quantity defined in a similar way as ω∗ will play a prominent
role in the antiferromagnetic case, too. While Eq. (8) is an
excellent approximation, in reality, �(z) has some additional
features in the energy range outside the gap and Im� is nonzero
except inside the gap.

III. ANALYTICAL PROPERTIES OF DMFT EQUATIONS
FOR BIPARTITE LATTICES

In its simplest form, the DMFT approach is applied to
homogeneous phases where all lattice sites are equivalent,
�i = �, but it can also be used to study phases with
commensurate antiferromagnetic long-range order [13]. In a
bipartite lattice, for example, Néel order can be described by
two different self-energy functions, �A and �B , for lattice
sites belonging to either sublattice.

Let us first consider the case without external magnetic
field. Working in the reduced Brillouin zone for an enlarged
unit cell consisting of one A site and one B site, the band
Hamiltonian is

H0 =
∑

σ,k∈RBZ

εk(c†Akσ cBkσ + H.c.), (12)

and the inverse lattice Green’s function matrix is

G−1
kσ (z) =

(
z + μ − �Aσ (z) −εk

−εk z + μ − �Bσ (z)

)
, (13)

thus

Gkσ (z) = 1

ζAσ ζBσ − ε2
k

(
ζBσ −εk
−εk ζAσ

)
, (14)

where ζασ (z) = z + μ − �ασ (z), α = A,B. The local Green’s
functions are then obtained through integration. The out-of-
diagonal elements are zero due to the particle-hole symmetry
of the band (this is the case also at finite doping). The diagonal
Green’s functions are given by

Gloc,ασ (z) = ζᾱσ (z)
∫

ρ0(ε)dε

ζAσ (z)ζBσ (z) − ε2
, (15)

and the spectral function is given through

Aασ (ω) = − 1

π
ImGloc,ασ (ω + i0+). (16)

Using fraction expansion, the integrals can be expressed in
closed form. This gives

Gloc,ασ (z) = ζᾱσ

G0(
√

ζAσ ζBσ ) − G0(−√
ζAσ ζBσ )

2
√

ζAσ ζBσ

. (17)

The DMFT loop is then closed via a site (A/B) and spin-
dependent self-consistency equation

�ασ (z) = z + μ − [
G−1

loc,ασ (z) + �ασ (z)
]
. (18)

The hybridization matrix is diagonal. In the absence of external
magnetic field, one can thus use simple U(1)spin NRG code with

spin-dependent Wilson chains. A further simplification in this
case is provided by the symmetry relations GAσ = GBσ̄ and
�Aσ = �Bσ̄ . In general, however, one must use the full 2 × 2
matrix structure in the spin space and properly handle the
discretization of the hybridization matrix with out-of-diagonal
elements. The derivations and implementation details are
discussed in Appendix.

If the f electrons remain itinerant in the AFM phase,
as indicated by the DMFT calculations, one expects that
the hybridization picture remains approximately correct in
the ordered phase, but one needs to incorporate the effects
of the exchange fields in the lattice. Writing these fields as hα =
±h for the c band and Hα = ±H for the f band, respectively
(plus sign for sublattice A, minus sign for sublattice B), one
then expects the following form of the self-energy:

�ασ (z) = ασh + Ṽ 2

z − ασH
, (19)

where on the right-hand side α and σ are to be understood as
±1 factors. This leads to excitation branches given by

E(k) = ± 1
2 [(εk + h + H ±

√
(εk + h − H )2 + 4Ṽ 2]. (20)

Previous work based on the continuous-time QMC solver
suggested that the relation

h = −H (21)

(named “quasilocal compensation”) is satisfied [11]. This
constraint was said to result from Kondo physics and lattice
coherence, since the effective energy levels in the hybridiza-
tion picture for itinerant antiferromagnetism in the KLM
are determined not by local exchange fields, but by long-
ranged molecular fields involving distant conduction band
electrons [11]. In case of perfect quasilocal compensation,
the quasiparticle branches intersect at εk = 0 and the local
spectral functions are quite similar to those for the Kondo
insulator, only with staggered spin polarization.

If the quasilocal compensation, Eq. (21), is violated, there
is an avoided crossing between the quasiparticle branches.
This should in principle lead to an opening of additional gaps,
however, since this is a strongly interacting system, the self-
energy has nonzero imaginary part and the pole in Eq. (19)
can lie away from the real axis. This immediately implies that
there will be some additional structure inside the bands at
energies E = ±ω∗ where ω∗ is now approximately (assuming
h ≈ −H )

ω∗ ≈
√

h2 + Ṽ 2. (22)

We show in the following that the combination of inelastic
scattering (broadening) and the avoided crossings of quasi-
particle bands result in asymmetric resonance curves in the
local spectral functions (“spin resonances”), as shown in the
schematic plots in Fig. 1.

These analytical considerations thus suggest that fine
structures are expected quite generically in the DMFT solution.
In previous DMFT(QMC), they were not visible, presumably
due to difficulties in performing analytic continuations. As we
show in the following section, they can be resolved using the
DMFT(NRG) approach.
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FIG. 1. (Color online) Local spectral functions Aσ (ω) (top row) computed for self-energies �σ (ω) (bottom row) approximated by a single
pole on or near the real axis for bipartite lattice that allows AFM order. In the Kondo insulator, there is no spin splitting and the pole is
located in the center of the gap at ω = 0 on the real axis. In the antiferromagnetic state with “quasilocal compensation,” the poles are located
symmetrically on the real axis at ω = ±H and the real parts of � are additionally shifted by ±h = ∓H. In generic Kondo antiferromagnet,
the values of h and −H are not exactly the same and the poles are shifted away from the real axis (i.e., Im� is nonzero).

IV. DMFT RESULTS

A. Spin-resonance structures

In Fig. 2, we summarize the main results of this work for a
value of J in the parameter range where the effects are the most
pronounced, i.e., in the strong-coupling case near the AFM-KI
transition. In the spectral function of the c-band electrons,
we observe an additional structure inside the band, Fig. 2(a).
In the occupied band, there is a dip for minority spin and a
sharp peak for majority spin; the resonance is also visible in
the spin-averaged spectral function, A = A↓ + A↑ shown in
Fig. 2(b). The origin of these features can be traced back to the
behavior of the momentum-resolved spectral function A(k,ω),
plotted as a function of εk in Fig. 2(c). The close-ups on
the regions where the quasiparticle branches should intersect
reveal that the spectral dip is associated with a reduced
spectral weight between the branches, i.e., an avoided crossing,
Fig. 2(f), while the peak corresponds to an enhancement
between two branches, Fig. 2(e).

The optical conductance, σ (�) shown in Fig. 2(d), shows
a threshold at twice the indirect gap �, then remains roughly
constant up to a sizable peak at � ≈ 2ω∗, where transitions
between two pairs of bands are strongly enhanced due to the
cross-shaped momentum-resolved spectral functions for both
occupied and empty bands. The presence of the spin resonance
is reflected in the shape of this peak, which has a notable hump
in its high-frequency flank.

B. Single-particle properties

The origin of antiferromagnetism in the KLM depends on
the value of the exchange coupling J , see Fig. 3(a). For small J ,
the AFM order develops by a mechanism similar to the Slater
antiferromagnetism in the Hubbard model (although in the

KLM, the system would be insulating even in the absence of the
unit cell doubling and consequent gap opening due to magnetic
order). This regime can be fully explained within a simple
Hartree-Fock (HF) theory [27]: the f states are fully polarized,
while the c states weakly antialign with the f spins at each site,
Fig. 3(b). There are inverse square root Slater singularities at
the gap edges, see Fig. 4 for J/D = 0.1. The quasiparticle gap
is linear in J due to the nesting instability (εkF +q = −ε−kF +q)
to AFM order in the p-h symmetric case [28], leading to
� = Jmf , where mf is the staggered magnetization of the
f orbitals. The f spins are nearly fully polarized (mf → 1/2
as J → 0), while c electrons start out unpolarized (mc → 0 as
J → 0).

In the intermediate regime, J ∼ J ′ ≈ 0.4D, the spin
resonance gradually develops from the band edge, Fig. 4.
In this regime, the gap versus J curve flattens out to
form a broad plateau that peaks around J/D = 0.35. The
staggered magnetization of the conduction band electrons is
also maximal in this parameter range.

For J > J ′, in the strong-coupling regime, the AFM
is driven by the reduction in the kinetic energy and is
characterized by a well-resolved spin resonance, Fig. 4(c).
The staggered magnetizations mc and mf , as well as the gap
� are all decreasing in this regime. Finally, as J is increased
further, there is a second-order quantum phase transition to a
paramagnetic Kondo insulator state, Fig. 4(d). The charge gap
is continuous across the transition.

In the intermediate to strong-coupling regime, the band gap
� is nonlinear, even nonmonotonous, function of J , while the
spin resonance position ωsr behaves linearly, see Fig. 3(c). A
good fit is given by

ωsr = 0.717J − 0.089. (23)
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(a) (c) (e)

(b) (d) (f)

FIG. 2. (Color online) Multiple manifestations of the “spin resonance” (fine structure inside the bands) in the dynamical properties of the
Kondo lattice model in the antiferromagnetic phase. (a) Peaks and dips in the spin-resolved local spectral function Aσ (ω) of the conduction
band. (b) Peaks in the spin-averaged local spectral function A(ω) = A↑(ω) + A↓(ω). (c) Momentum-resolved spectral function A(ε,ω) and
close-ups on the regions at ε = 0 showing (e) an enhanced density of states in the empty band (associated with the resonance) and (f) a reduced
density of states, i.e., avoided crossing, in the occupied band (associated with the dip). (d) Optical conductivity exhibiting a hump for energies
slightly above the main maximum. Labels (A), (B), and (C) are discussed in the text.

This linearity is “inherited” from the Kondo insulator phase,
where it holds for the quantity ω∗. This further emphasizes
the continuous nature of the AFM-KI phase transition and the
persistence of itinerancy.

C. Optical conductivity

In the weak-coupling AFM regime, the optical conductivity
shows a threshold behavior with a pronounced resonance
corresponding to twice the quasiparticle gap, � = 2�, see
Fig. 5 for J/D = 0.1. Similar behavior is also observed in
the Slater AFM regime of the Hubbard model [29]. In the
strong-coupling regime, the curves are more complex, see
Fig. 2(d). After the threshold at � = 2�, there is (A) a
region of moderate conductivity, followed by (B) a pronounced
resonance at � = 2ω∗, and (C) an additional more-or-less
pronounced structure associated with the spin resonance. As
J is increased toward Jc, region A progressively flattens out
and evolves into a plateau of nearly constant very low optical
conductivity (see J/D = 0.375, 0.42, and 0.50 in Fig. 5).
This region is associated with the transitions between the
quasiparticles at band edges (εk ≈ ±D), which have low
spectral weight. Region B is associated with the cross-shaped
form of the εk-resolved spectral function in the band center
(εk ≈ 0).

It is worth to emphasize that the spin resonances are
not observed for negative (ferromagnetic) Kondo exchange

coupling J , although the system is also antiferromagnetic.
This is due to the very different topology of the quasiparticle
bands (“small Fermi surface”) in this case [11,30], which is,
in turn, associated with a different form of the self-energy
function with no pronounced poles. Furthermore, there is
no spin resonance if we enforce paramagnetic solution in
the region where the AFM is the true ground state (such a
comparison of AFM and PM solutions in shown in Fig. 6);
in the paramagnetic case, the topology is that of “large Fermi
surface,” but there is no staggered magnetization. We thus
conclude that the spin resonance is a characteristic property
of itinerant antiferromagnetism, requiring both itinerancy of
f electrons and staggered magnetization.

In the DMFT calculations using solvers requiring an
analytical continuation, such in-band spectral features have
not been previously observed. This is the case also for high-
quality continuous-time QMC calculations with analytical
continuation using the Padé approximation [11]. Some hints of
the spin resonances have been observed in prior DMFT(NRG)
works [20,30,31], but have not been discussed. The spin
resonances appear for any value of the NRG broadening
parameter: even in calculation with no z averaging and with
large broadening parameter, their presence is suggested by a
broad spectral hump in one band and as a faint depression
in the other. As the broadening is decreased, these features
become sharper and more asymmetric. Because of their
persistent nature and the very generic conditions on the
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FIG. 3. (Color online) From weak-coupling to strong-coupling
antiferromagnetism in the Kondo lattice model as a function of the
Kondo exchange coupling J. (a) Reduction of kinetic or potential
energy with respect to the reference paramagnetic state, indicating
different mechanisms of magnetic ordering for weak and strong
coupling regimes. (b) Staggered magnetization of the conduction
band electrons (mc) and local moments (mf ). (c) Spectral gap � and
spin-resonance position ωsr . ωsr is not well defined for J/D � 0.3.

functional form of the self-energy for their emergence, it
is unlikely that they were a numerical artifact of NRG
calculations. Recently, some preliminary calculations using
the continuous-time quantum Monte Carlo (CTQMC) method
for the periodic Anderson model with analytical continuation
using the maximum entropy method confirmed the presence
of inner structure in the bands, with indications of both a dip
and a peak [32].

D. Temperature dependence

The staggered magnetization decreases with increasing
temperature until at the Néel temperature TN the system
undergoes a transition to the paramagnetic phase, Fig. 7.
The evolution of the spectra confirms the relation of the
spin-resonance peaks with the magnetic order, since the peak
intensity follows the staggered magnetization. Interestingly,

FIG. 4. (Color online) Spin-resolved spectral functions of the
conduction band for a range of J : (a) weak-coupling Slater regime
with inverse square root divergence at gap edges (J/D = 0.1, 0.25),
(b) crossover regime with a complex form of the spectra near the gap
edges (0.375), (c) strong-coupling regime with smooth gap edges and
well-developed spin resonances (0.5, 0.55), and (d) Kondo insulator
with no spin resonance (0.6).

the peak position itself does not depend much on the order
parameter. It is also noteworthy that the overall structure of
the effective bands does not change across the transition [11].
A sign of this is the persistence of a reduced density of
states (a hybridization-induced “pseudogap”) around ω = 0
to temperatures well above TN , where the order parameter is
already zero and the spin-resonance structure is eliminated.

E. Magnetic field

We now consider the effect of an external magnetic field
on the antiferromagnetic state. We assume g ≡ gc = gf and
express the field in units of the Zeeman energy, gμBB.

There are no magnetic anisotropy terms in our Hamiltonian,

FIG. 5. (Color online) Optical conductivity for a range of J/D

(as indicated in the plot next to the corresponding curves). Weak-
coupling antiferromagnetism is characterized by threshold behavior
with a peak at 2�, while strong-coupling antiferromagnetism exhibits
more complex behavior with a threshold at 2� and the main peak at
2ω∗ ≈ 2ωsr, the spin resonance appearing as a secondary maximum
or as a hump on the flank of the main peak. σ0 = e2/h.
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FIG. 6. (Color online) Comparison of antiferromagnetic and
paramagnetic DMFT solutions for equal values of J reveals the fine
details in the ordered phase.

thus in the ground state the staggered magnetization always
reorients itself perpendicular to the applied field to preserve
the exchange energy generated by the antialignment of spins
in c and f bands.1 Likewise, when magnetic field is applied
on the Kondo insulator, it induces an antiferromagnetic phase
transverse to the external field [33,34]. In this work, we will
follow the convention that the direction of the field is taken
to be along the x axis (we denote this as the “longitudinal”
direction) and the staggered magnetization along the z axis
(this is the “transverse” direction).

f electrons have higher magnetic susceptibility than c

electrons, thus their uniform magnetization rapidly increases
with the applied field, while the c electrons at first antialign
due to the strong local Kondo coupling J � B and only for
very strong fields (of order J ) reorder in the same direction
as the f orbitals, see upper panel in Fig. 8. For weak fields,
the stagerred magnetization first increases, see lower panel
in Fig. 8. This can be explained as the suppression of the
Kondo effect by breaking the local singlets through magnetic
field, which leads to stronger spin polarization of the orbitals.
The staggered magnetization is maximal for B = Bm ≈ 0.1D

and then slowly decreases towards 0 as the gap is closing.
The charge gap becomes exponentially small in the large-B
limit [33], thus at nonzero temperature the system is effectively
a strongly spin-polarized paramagnetic metal. The results in
Fig. 8 can be qualitatively reproduced using a simple exact
calculation on a two-site cluster with suitable molecular fields

1If the external magnetic field is applied in the direction of
stagerred magnetization, a metastable solution with no transverse
magnetization can be obtained in the DMFT calculations. We do not
consider this case here.

FIG. 7. (Color online) Reduction of the spin-resonance structure
(peak weight) with increasing temperature. Inset: temperature vari-
ation of the staggered magnetization across the thermal AFM-PM
phase transition.

for AFM order put in by hand. The only small discrepancies
are due to the stronger itinerancy of c electrons in the full
lattice.

The spectra undergo significant changes as the field is
applied, see Fig. 9. Local spectral functions (top panel) reveal
that the spin resonances are resilient to small fields and that
their position remains roughly constant as B is increased.
They are washed away at higher fields when the AFM order
itself becomes strongly suppressed. This is in line with the
interpretation of the spin resonance as a manifestation of
the staggered magnetization. The width of the resonances is,

FIG. 8. (Color online) Effect of an applied magnetic field on the
magnetic order in the antiferromagnetic phase of the Kondo lattice
model. (Top) Uniform magnetization components m‖ of c and f

orbitals in the direction of the field. (Bottom) Staggered magnetization
components m⊥ of c and f orbitals perpendicular to the field. The
following defining relations hold: mx,A = mx,B = m‖ and mz,A =
−mz,B = m⊥.
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(a)

(b)

(c)

FIG. 9. (Color online) Evolution of (a) local spectral function
Aσ (ω) and (b) momentum-resolved spectra Aσ (εk,ω) for increasing
external magnetic field B in the strong-coupling AFM phase (J/D =
0.5). Labels L, H, and M are explained in the text. The cross-cut of
the momentum-resolved spectrum at ε = 0 is shown in (c).

however, strongly field dependent, reaching a maximum for
values of order Bm where the staggered magnetization peaks.
When B increases further, the resonance is suppressed at

the same time as the staggered magnetization tends toward
zero, as expected. The behavior of spectral functions near
the band edges is equally interesting. In particular, we
note the reemergence of the structure characteristic for the
weak-coupling case with square-root and inverse-square-root
singularities.

The field-dependence can be better understood through
the momentum-resolved spectral functions, see panel (b) in
Fig. 9. In weak field, the main effect is the “doubling” of
the quasiparticle branches (four to eight). This results from
the breaking of the symmetry relation GAσ (ω) = GBσ̄ (ω),
which guarantees the degeneracy of the branches in the
absence of the external field. Physically, this means that in the
presence of the field the c band electrons propagate slightly
differently if their spin has a transverse component, which
is aligned or antialigned with the uniform component of the
magnetization. This difference becomes more pronounced at
larger fields, and the splitting grows larger (see the case of
B/D = 0.12). We also note that the higher-energy branches
(label H in the plot) always have much shorter quasiparticle
lifetime than the lower-energy ones (label L in the plot)
because of the relaxation mechanism via transverse spin
component reorientation, taking the quasiparticles from the
upper to the lower branch. At high fields, the H branches
become so diffuse that they can hardly be distinguished. This
evolution can also be followed in the constant-momentum
section of the momentum-resolved spectrum shown in
Fig. 9(c).

A further effect of the field is the emergence of the curvature
in the L branches, see label M in Fig. 9(b). This new feature
directly explains the resurgence of the (inverse)-square-root
singularities at the gap edges, since the direct gap moves from
the noninteracting band edges at ε = ±D, where the DOS
goes to zero, ρ(±D) = 0, to inner regions, gradually shifting
to the center of the band at ε = 0 as B increases. In Sec. V,
we will see that most of these features can be explained in the
hybridization picture with longitudinal uniform and transverse
staggered magnetization.

F. Universality and robustness

It has been pointed out that in the DMFT the most
important characteristic of the noninteracting density of states
(DOS) of the lattice is its effective bandwidth, defined through
the second moment of the DOS,

Deff =
∫

ε2ρ0(ε)dε, (24)

which sets the scale of the kinetic energy. It is equal to D for
the Bethe lattice and 2D cubic (square) lattice, 0.816D for 3D
cubic lattice, and 1.41D for the hypercubic lattice. Indeed,
it has been found that the Mott metal-insulator-transition at
T = 0 in the paramagnetic phase of the Hubbard model occurs
at roughly the same value of the rescaled electron-electron
repulsion parameter U/Deff , which reflects the nature of the
transition: competition between the delocalizing effect of the
kinetic energy and the localizing effect of the electron-electron
repulsion.

For the AFM-KI phase transition in the KLM, we also
find that the critical coupling is given by essentially the
same ratio of Jc/Deff (we obtain Jc/Deff ≈ 0.56 for the
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FIG. 10. (Color online) Spectral functions of the Kondo lattice
model on four different lattices: Bethe lattice, 2D cubic (square
lattice), 3D cubic, and infinite-D cubic (Gaussian DOS) lattices. Note
that the figure axes are scaled in terms of the effective bandwidth Deff

and that the same rescaled parameter J/Deff has been used in all four
DMFT calculations.

Bethe lattice, 2D and 3D cubic, and Jc/Deff ≈ 0.54 for the
hypercubic lattice). This can again be rationalized in terms of a
competition between kinetic and exchange terms: kinetic terms
promote delocalization of c electrons, while the exchange
terms enhance their localization by generating localized Kondo
singlet states. This essentially agrees with Doniach’s picture
of competing RKKY and Kondo ground states.

The scaling in terms of Deff is valid even more generally.
The comparison of spectral functions computed for different
lattice types, Fig. 10, shows that despite significant differences
in details, the main features of appropriately rescaled spectral
functions are common to all cases: (a) they have essentially the
same quasiparticle gap �, (b) they exhibit a spin-resonance
structure, and (c) the spin resonance appears at roughly the
same frequency ωsr and has comparable spectral weight
(with the exception of square lattice, which has a van Hove
singularity at ε = 0 that enhances the spin-resonance peak).

The spin resonance is also present in closely related models
that have itinerant AFM order: high-spin Kondo lattice model
(explicitly tested for S = 1 KLM, also in presence of magnetic
anisotropy term DS2

z , for both axial D < 0 and planar D > 0
anisotropy) and the periodic Anderson model (PAM) with
parameters chosen so that the model is particle-hole symmetric
and in the Kondo limit (large U and ε + U/2 = 0). In PAM, if
the hybridization t and the f -level charge repulsion U are in-
creased while keeping the effective Kondo coupling J ∝ t2/U

constant, the hybridization is increased in comparison with the
exchange energy. The result is that the staggered magnetization
decreases and the spin resonance gradually disappears, yet the
spectral gap remains roughly constant, see Fig. 11. Interest-
ingly, as t increases at constant J , the charge fluctuations on
the f level actually decrease due to increasing U .

V. DISCUSSION

The DMFT results indicate that at half-filling the hy-
bridization picture is an essentially correct description of
the antiferromagnetic phase of the Kondo lattice model and

FIG. 11. (Color online) In periodic Anderson model (PAM), if
J ∝ t2/U is kept constant while t and U increase, the AFM order
is suppressed, the spin resonance disappears, yet the gap remains
constant. Here, t/D = 0.49.

that the topology of the quasiparticle bands remains the
same (large Fermi surface) for all values of J. At the same
time, our numerical results indicate that at the quantitative
level there are interesting details that have experimentally
observable consequences, such as the presence of enhanced
and suppressed density of states in the center of the band at the
avoided crossing points of the quasiparticle bands (visible in
ARPES) and the nontrivial structure of the optical conductivity
(see, in particular, the comparison in Fig. 6). The hybridization
picture does not include any inelastic-scattering processes,
since it is essentially a noninteracting theory. Even at T = 0
it therefore does not properly capture effects away from the
Fermi level, but nevertheless it is a good starting point.

Fine structure in the spectra is also found for other strongly
correlated systems, in particular for the Hubbard model in the
paramagnetic [18,35–42] and antiferromagnetic phase [25].
Such spectral features can be understood mathematically
through the structure of the DMFT equations and causality
(Kramers-Kronig relations) [37], as intrinsic emergent col-
lective fluctuations [39,40], or as being due to cross-over
between fixed points [43]. In the antiferromagnetic case, the
peaks correspond to the string (spin-polaron) states [25], which
are adiabatically connected with those in the t-J model (the
U → ∞ limit).

One could be tempted to similarly relate the “spin
resonance” to some clearly identifiable excitations in the
system, perhaps a magnetic mode, as suggested by the linear
dependence of the peak position ωsr on the exchange coupling
constant J , Eq. (23). The scale of ωsr is essentially bare J

(up to a prefactor of ≈0.72), thus it appears to be trivially
associated with local spin flips. Nevertheless, this seems to be
rather coincidental and trivial (adding an electron to half-filled
system breaks a local Kondo singlet and costs ≈3/4J in the
large-J limit), and does not explain the origin of the peak that,
rather, appears due to (unequal) local effective fields h and H

associated with the order parameter (staggered magnetization)
and the presence of inelastic scattering.

Within the DMFT, a nontrivial fine structure can arise
by two mechanisms: (1) the nontrivial properties of the
underlying quantum impurity model and the associated
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cross-overs between the various fixed points of the model (as
discussed, for instance, in Ref. [43]), (2) the self-consistency
equation (possibly adapted for a particular type of broken-
symmetry solution) and lattice effects. In some cases, it may
not be possible to clearly distinguish between the two. Indeed,
the most interesting effects in the DMFT result from the
frequency-dependent hybridization function �(ω), which is
the input to the impurity solver. In our case, it is safe to claim
that the lattice effects are the dominant mechanism, while
the impurity problem merely provides a way for generating
inelastic scattering.

A. Zero magnetic field

Let us first analyze the equation for the quasiparticle bands
in the absence of the external magnetic field,

Re[ζAσ (ω)ζBσ (ω) − ε2] = 0, (25)

focusing on the region close to the spin resonance at ε = 0.

We are then actually solving

Re[(ω − �↑(ω))(ω − �↓(ω))] = 0. (26)

Neglecting the imaginary parts of �, this reduces to

(ω − Re�↑(ω))(ω − Re�↓(ω))] = 0, (27)

and it follows that the solutions are given by

ω = Re�σ (ω). (28)

It turns out that in the range of J where the spin resonance is
the most pronounced, this equation has solutions at ω ≈ ±ωsr

for both spin directions. In other words, one has

Re�↑(ωsr) ≈ Re�↓(ωsr) ≈ ωsr. (29)

This condition has been interpreted in Ref. [11] in terms of
the molecular fields h and H as the relation h = −H and
named the “quasilocal compensation.” We find, however, that
this “compensation” is not generally valid.

We have systematically extracted the parameters from
the calculated self-energy functions using the following
hybridization-picture ansatz:

�↑(ω) = h + Ṽ 2

z − H + iδ
. (30)

A small imaginary part δ has been added to account for
the finite width of the peak in Im�. For stability, the
parameter extraction has been performed simultaneously on
real and imaginary parts of the function. The results are
shown in Fig. 12. The plot reveals that the curves h(J )
and −H (J ) have a similar nonmonotonic behavior with a
maximum value in the crossover region between the weak-
and strong-coupling antiferromagnet (J/D ≈ 0.35), but they
do not overlap: instead, they only intersect at a single plot
near J/D = 0.5. The hybridization parameter Ṽ is continuous
across the AFM-KI transition, as already noted in Ref. [11].
(We note that Ṽ in our work is defined slightly differently
compared to that in Eq. (9) of Ref. [11], since the resonance
in � is actually centered away from ω = 0.) In contrast to
Ref. [11], we find that Ṽ 2 is not simply proportional to
exp(−1/ρJ ) ∼ TK , but has a hump in the range of J > Jc

with a pronounced spin resonance in the spectrum. In the

FIG. 12. (Color online) Kondo antiferromagnet in the hybridiza-
tion picture with spin polarization: parameters for the single-pole
ansatz for the self-energy �σ (ω) as a function of the Kondo
coupling J .

paramagnetic range of J , the proportionality Ṽ 2/D ∝ TK is
recovered. The imaginary-part parameter δ is small, but needs
to be included for a good fit, even though it leads to somewhat
worse agreement with Im�(ω), which, in particular, should be
strictly equal to zero inside the gap.

In Fig. 13(a), we plot the real and imaginary parts of
the self-energy together with the corresponding single-pole
fit functions. The agreement is better in the strong-coupling
regime at J/D = 0.5, where the pole is very strong and
dominates the remaining structure in the self-energy, visible
in the close-up on Im�(ω) shown in panel (b) and labeled as
B. Surprisingly, in the weak-coupling regime at J/D = 0.1,
the agreement is much less satisfactory. The main reason is
that the pole is not much larger compared with the remaining
structure: region B is merged with the pole A, thus the peak
is no longer a simple Lorentzian and consequently Re�(ω) is
asymmetric.

We emphasize that the spin resonances are not located at the
frequencies of the poles in the self-energy, but at significantly
higher energies. We now study this in more detail by consid-
ering the generic case at J/D = 0.4 where h and −H differ
slightly. Functions ReζAσ (ω) = ω − Re�Aσ (ω) intersect the
real axis at two different points, see Fig. 14(a). Somewhere
between these two points, the function p = (ζAσ (ω)ζBσ (ω))1/2

goes through a branch cut so that its imaginary part has a jump,
Fig. 14(c). In the DMFT expression for the local spectral
function, Eq. (17), this discontinuity is canceled by that in
G0(p) − G0(−p), resulting in a continuous spectral function,
which, however, has a peak [see Fig. 14(d)].

B. Finite magnetic field

We now consider the case of finite magnetic field where
the momentum-resolved spectral functions show complex
structure with quasiparticle branch doubling in number. The
simplest attempt to rationalize this behavior is to incorporate
the additional uniform magnetic field in the hybridization
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(a)

(b)

FIG. 13. (Color online) Self-energy functions and fits to the
hybridization-picture ansatz with a single-pole. The fit quality is
mediocre in the weak-coupling regime (J/D = 0.1), but improves
in the strong-coupling regime (J/D = 0.5). (b) Im� has some fine
structure in addition to the dominant poles.

picture. The self-energy function now has a 2 × 2 matrix
structure:

�(ω) =
(

h⊥ h‖
h‖ −h⊥

)
+ Ṽ 2

[
z −

(
H⊥ H‖
H‖ −H⊥

)
+ iδ

]−1

.

(31)

The extracted parameters are shown in Fig. 15. The staggered
components h⊥ and H⊥ (which correspond to the previously
discussed h and H in the absence of the field) have only weak
B dependence: at first, they slightly grow (in absolute value),
similar to the staggered magnetization components mc⊥ and
mf ⊥, then decrease. The homogeneous longitudinal molecular
field components also mimic the corresponding magnetization
components: H‖ rapidly grows with B and eventually becomes
the dominant molecular field, while h‖ slightly increases
and then changes sign. The effective hybridization Ṽ does
not change appreciably with field. We also note that the
quality of the fit worsens at high fields. This is expected
since the system renormalizes toward a weakly interacting
spin-polarized limit where the simple hybridization picture is
not a good approximation (similar to the case of small J at
B = 0).

(a)

(b)

(c)

(d)

FIG. 14. (Color online) Analytical structure leading to the spin
resonance. (a) Nearby solutions of ω = Re�σ (ω) for σ = ↑ and ↓.

(b) Im�σ (ω) are nearly constant for ω ≈ ωsr. (c) Argument of the
noninteracting Green’s functions in the DMFT expression [Eq. (17)]
for local Green’s functions. (d) Resulting local spectral functions
featuring enhancement or suppression at ω ≈ ωsr.

It is worth mentioning that in the strong-coupling regime for
large J/D ∼ 0.5, Ṽ is much larger than h ≈ −H , thus ω∗ =√

Ṽ 2 + h2 ∼ Ṽ . The effective hybridization Ṽ is not strongly
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(a)

(b)

FIG. 15. (Color online) (a) Parameters for the hybridization-
picture ansatz for the Kondo antiferromagnet in external magnetic
field. (b) Momentum-resolved spectral function at finite magnetic
field.

affected by the field, therefore ω∗ remains approximately
constant. This explains why the spin resonance position is
not much affected by the external magnetic field, as seen in
Fig. 9.

VI. CONCLUSION

We have performed a detailed study of the spectral
properties of the Kondo lattice model at half-filling where
the system is an itinerant antiferromagnetic insulator for
J < Jc and a paramagnetic Kondo insulator for J > Jc. The
dynamical mean-field theory calculations have been performed
with a quantum impurity solver with high spectral resolution.
We have uncovered fine structure (“spin resonances”) inside

the bands at frequencies given by the crossing point of the
quasiparticle branches in the center of the noninteracting band
(ε = 0). These features are due to the inelastic-scattering
processes which are not taken into account in the simplified
hybridization picture. They are directly related to the existence
of the AFM order: whenever the AFM order disappears, either
due to thermal phase transition, external magnetic field, or
quantum phase transition to the KI, the spin resonances also
disappear.

Similiar spin resonances also exist in the superconducting
phase of the KLM [44] and they share some other common
properties, for instance, their position also changes linearly
with J. These analogies are not too surprising since the
Nambu formalism used to describe superconductivity is very
similar to the A/B sublattice formalism used to describe Néel
order on bipartite lattices, thus the analytical structure of
the DMFT self-consistency equations is analogous. Following
this analogy, the resonances in the superconducting case can
be interpreted to be arising from simultaneous presence of
the f -electron itinerancy (heavy Fermi liquid) and nonzero
order parameter, and should thus appear generically in heavy-
fermion s-wave superconductors. This is a further indication
that the superconducting state emerges out of the large Fermi
surface heavy-fermion state.

The most direct way to experimentally observe such a sharp
spectral structure is tunneling spectroscopy, which gives access
to the local spectral function where the “spin resonance”
is most pronounced (more than in the momentum-resolved
spectral functions measurable by ARPES). The feature to look
for is the apparition of resonances at finite bias voltage as the
system becomes antiferromagnetic, with an intensity directly
related to the order parameter. Another possibility is optical
spectroscopy where fine details of peak shapes can also be
easily measured. The effect of nonlocal correlations on the
observed fine structure remains an open question and will be a
part of future research. It could be addressed, for instance, in
cellular DMFT studies [45].
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APPENDIX: DMFT(NRG) APPROACH IN THE
ABSENCE OF SPIN SYMMETRIES

The inverse Green’s function has a block 2 × 2 matrix
structure, each block being itself a 2 × 2 matrix in the spin
space:

G−1
k (z) =

(
z + μ − τ 3(h + hs) − τ 1ht − �A −εk

−εk z + μ − σ 3(h − hs) − τ 1ht − �B

)
. (A1)
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Here, τ i are Pauli matrices, hs is the staggered field, h is the
longitudinal homogeneous field, and ht is the homogenous
transverse field. As in the spin diagonal case, we introduce ζA

and ζB ,

G−1
k (z) =

(
ζA −εk

−εk ζB

)
. (A2)

We assume ζA and ζB to be invertible, and perform a blockwise
invertion of the matrix:

M =
(

A B

C D

)
↔ M−1

=
(

(A− BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

)
,

(A3)

thus

Gk(z) =
((

ζA − ε2
k ζ

−1
B

)−1
. . .

. . .
(
ζB − ε2

k ζ
−1
A

)−1
.

)
(A4)

The out-of-diagonal elements are of no interest, because
they are odd functions of εk and will drop out after the
integration since D(ε) is assumed to be even. (It is indeed
even for all lattice types considered in this work.)

The local Green’s function is

G(z) = 1

N

∑
k

Gk(z)

=
∫

dεD(ε)

(
ζB(ζAζB − ε2)−1 . . .

. . . ζA(ζBζA − ε2)−1

)
.

(A5)

Note that ζA and ζB in general do not commute.
We consider each diagonal submatrix problem. We write

FA = ζAζB, FB = ζBζA (A6)

and

DA = FA − ε2, DB = FB − ε2. (A7)

We need to integrate each matrix component separately, but
the pole structure is the same for all components.

We write

FA =
(

F11 F12

F21 F22

)
(A8)

and

DA =
(

F11 − ε2 F12

F21 F22 − ε2

)
. (A9)

Then

[DA]−1 = 1

(F11 − ε2)(F22 − ε2) − F12F21

×
(

F22 − ε2 −F12

−F21 F11 − ε2

)
. (A10)

We expand the fraction

1

(F11 − ε2)(F22 − ε2) − F12F21

= cA

(
1/ε1

ε − ε1
+ −1/ε1

ε + ε1
+ −1/ε2

ε − ε2
+ 1/ε2

ε + ε2

)
,

(A11)

where

ε1,2 = 1√
2

(
F11 + F22

±
√

F 2
11 + F 2

22 + 4F12F21 − 2F11F22
)1/2

(A12)

and

cA = 1/2

(ε1 − ε2)(ε1 + ε2)
. (A13)

We use the relation∫
D(ε)ε2dε

z − ε
= −z + z2

∫
D(ε)dε

z − ε
= −z + z2G0(z),

(A14)

where G0(z) is the noninteracting local Green’s function for
the chosen lattice problem.

Thus, for example,∫
D(ε)dε

ε − ε1
= −G0(ε1), (A15)

and ∫
ε2D(ε)dε

ε − ε1
= ε1 − ε2

1G
0(ε1). (A16)

Then

G(z) =
∫

dεD(ε)

(
ζB[DA]−1 . . .

. . . ζA[DB]−1

)

=
(

ζBJA 0
0 ζAJB

)
, (A17)

where JA/B are the integrals over ε. Since ζA/B depend only
on z, not ε, they may be factored out and taken into account
after the integration.

For JA, we find

JA = cA

(
F22 −F12

−F21 F11

)
[−(1/ε1)G0(ε1) + (1/ε1)G0(−ε1)

+ (1/ε2)G0(ε2) − (1/ε2)G0(−ε2)]

−cA

(
1 0
0 1

){ + (1/ε1)
[
ε1 − ε2

1G
0(ε1)

]
−(1/ε1)

[ − ε1 − ε2
1G

0(−ε1)
] − (1/ε2)

[
ε2 − ε2

2G
0(ε2)

]
+ (1/ε2)

[ − ε2 − ε2
2G

0(−ε2)
]}

. (A18)

For each A/B subproblem, the hybridization function is then
the standard one:

�i(z) = Im
[
G−1

i (z) + �i(z)
]
, (A19)

with i = A/B, and �i , Gi , and �i are all 2 × 2 matrices.
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