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Numerical subgap spectroscopy of double quantum dots coupled to superconductors
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Double quantum dot nanostructures embedded between two superconducting leads or in a superconducting
ring have complex excitation spectra inside the gap which reveal the competition between different many-body
phenomena. We study the corresponding two-impurity Anderson model using the nonperturbative numerical
renormalization group (NRG) technique and identify the characteristic features in the spectral function in various
parameter regimes. At half-filling, the system always has a singlet ground state. For large hybridization, we
observe an inversion of excited interdot triplet and singlet states due to the level repulsion between two subgap
singlet states. The Shiba doublet states split in two cases: (a) at nonzero superconducting phase difference and
(b) away from half-filling. The most complex structure of subgap states is found when one or both dots are in the
valence fluctuation regime. Doublet splitting can lead to a parity-changing quantum phase transition to a doublet
ground state in some circumstances. In such cases, we observe very different spectral weights for the transitions
to singlet or triplet excited Shiba states: the triplet state is best visible on the valence-fluctuating dot, while the
singlets are more pronounced on the half-filled dot.
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I. INTRODUCTION

The advances in fabrication and characterization of small
electronic devices have enabled new ways to perform spec-
troscopy of strongly correlated electron systems. A prominent
example is the tunneling spectroscopy [1–4] of interacting
quantum dots coupled to superconducting contacts as well as
magnetic adatoms on superconducting surfaces [5–9], where
the competition between the Kondo screening [10] and super-
conducting correlations can be studied in exquisite detail be-
cause it engenders spectroscopically sharp resonances known
as the Andreev bound states (or Yu-Shiba-Rusinov states or
simply Shiba states) [11–20]. At low enough temperatures
even fine details can be resolved [8,9,21,22] and in some cases
quantitative agreement is found between the experiment and
accurate theoretical modeling using nonperturbative numerical
techniques [23].

The most thoroughly studied problem is that of a single
quantum dot in the deep Kondo limit where charge fluctuations
are frozen out and the device behaves essentially as a local
moment characterized by a single bare parameter, the Kondo
exchange coupling JK , and at low temperatures by a single
scaling parameter, the Kondo temperature TK . When such a
quantum dot (QD) is coupled to a superconducting host with
energy gap �, the ground state of the system depends on the
ratio TK/�. For TK � �, the Kondo screening is incomplete
due to a lack of quasiparticle states at low energy scales, thus
the system behaves as a free local moment decoupled from the
BCS bath, which is an overall spin doublet state. For TK �
�, the Kondo screening is fully completed on energy scales
high above the onset of pairing; the superconducting state
is thus formed out of the local Fermi liquid state resulting
from the Kondo effect, and is an overall spin singlet. For
TK ∼ � there is a quantum phase transition between these
two different ground states. In this parameter range, the many-
particle spectrum usually includes at least three states (one
singlet and one doublet) below the onset of the continuum of
quasiparticle states at �. The singlet-doublet excitations are

spectroscopically visible as resonance pairs at ω = ±(ES −
ED). Additional complexity in the problem is brought about
by nonzero difference of the superconducting phases that leads
to Josephson current. The direction of the current depends on
the subgap states and the singlet-doublet transitions can be
directly related to the physics of 0 or π junction behavior
[19,20,24].

Recently this research direction has intensified with a focus
on more complex systems. Double quantum dots (DQD) are
the minimal nontrivial systems that capture the essence of
extended strongly correlated materials described by lattice
models [25–30]. Coupled to superconducting leads, DQDs can
serve to explore the competing effects of exchange coupling,
charge fluctuations, Kondo screening, and superconductivity
[31–34]. In this work, DQDs are studied using a reliable
nonperturbative numerical renormalization group technique
in a wide parameter range with the goal of identifying the
characteristic behavior of the subgap Shiba states in various
regimes, both their positions and spectral weights. The states
are analyzed in terms of the eigenstates of the superconducting
atomic (wide-gap) limit; the deviations between this simple
theory and the full numerical calculations are pointed out. In
the context of superconducting rings, an important question
is the variation of the subgap state energies as a function
of the flux. Strong flux dependence implies sizable particle
exchange between the superconducting contacts on either side
of the DQD structure, thus the regimes of enhanced valence
fluctuations away from the integer filling limit are particularly
interesting.

This work is structured as follows. In Sec. II we intro-
duce the model, the numerical method, and the wide-gap
approximation. The presentation of the results in Sec. III is
divided into three subsections: the left-right symmetric case at
(A) half-filling and (B) away from half-filling, and (C) the fully
generic case with unequal quantum dots. Section IV contains a
short discussion of the two-impurity Kondo quantum quantum
phase transition in the presence of superconductivity.
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FIG. 1. (Color online) Schematic representation of the system:
double quantum dot coupled to superconducting leads forming a ring
pierced by the magnetic flux. The tunneling probe is very weakly
coupled to either or both quantum dots.

II. MODEL AND METHOD

The DQD system is schematically represented in Fig. 1.
We consider two quantum dots (i = 1,2) described by the
Anderson impurity model:

Hi = εini + Uni↑ni↓

= δi(ni − 1) + U

2
(ni − 1)2 + const. (1)

Here ni = ni↑ + ni↓ with niσ = d
†
iσ diσ as the QD occupancy,

U is the Hubbard charge repulsion, and δi is the impurity
energy level measured with respect to the particle-hole
symmetric point (half-filling), i.e., δi = εi + U/2. Each dot
is coupled to a separate superconducting bath

HSC,i =
∑
kσ

εk,ic
†
kσ,ickσ,i −

∑
kσ

�ie
iφi c

†
k,↑,ic−k,↓,i + H.c.,

(2)

where εk,i is the band dispersion, �i is the gap parameter, and
φi is the superconducting phase. The difference of phases will
be denoted as φ = φ1 − φ2. The coupling terms are

Hc,i =
∑
kσ

Vk,id
†
iσ ckσ,i + H.c., (3)

where Vk,i is the hopping parameter. We assume that the two
bands are flat: in the absence of superconductivity they have
constant density of states ρ = 1/2D on the interval [−D : D],
thus D is one half of the bandwidth (D will henceforth be
used as the energy unit, D = 1). The hybridization strengths
are characterized by functions


i(ω) =
∑

k

|Vk,i |2δ(ω − εk,i) = πρV 2
i , (4)

which will be taken as constants. The two dots are intercon-
nected by a tunneling term

H12 = −t
∑

σ

d
†
1σ d2σ + H.c. (5)

Furthermore, two nearby quantum dots are typically also
coupled capacitively [35–43] leading to an interdot Coulomb
interaction term of the form

HV = V n1n2.

Most results presented in this work are calculated for

U/D = 0.27, 
/D = 0.02, �/D = 0.01, V/D = 0,

(6)

while δi and t will be variable. Exceptions to this parameter
set will be clearly pointed out. For reference, the results for the
normal state (� = 0) are presented as Supplemental Material
[44].

Since U/π
 ≈ 4.3, the dots are in the Kondo regime
near half-filling. This choice of parameters is experimentally
realistic. The Kondo temperature (according to Wilson’s
definition) of each separate QD is given by [10,45]

TK = 0.182U
√

ρJK exp

[
− 1

ρJK

]
, (7)

where

ρJK = 2


π

(
1

U/2 − δ
+ 1

U/2 + δ

)
. (8)

At δ = 0 this gives TK ≈ 10−4 � �. The ground state of a
single quantum dot would be a doublet, with the excited singlet
state at energy ≈0.6� [44].

The method of choice for this class of problems is the
numerical renormalization group (NRG) [15,45–54] which
is able to quantitatively reproduce the experimental results
[23,55–58], but also provides additional detailed information
about the system properties which are difficult or impossible
to measure. The calculations were performed in the low-
temperature limit with the discretization parameter � = 4,
keeping 5000 states at each diagonalization step, with Nz = 2
discretization meshes [59–62]. The only symmetry in the
problem is the SU(2) spin symmetry. The spectra are computed
using the density-matrix NRG algorithm [63] with the N/N +
1 patching approach and with a mixed broadening scheme: for
|ω| > � log-Gaussian broadening kernel with α = 0.6 is used,
while for |ω| < � Gaussian broadening with σ = 10−3 is used
(this latter choice mimics nonzero lifetime of resonances due
to intrinsic relaxation processes at nonzero temperatures [9]
and due to the presence of the tunneling probe [64]).

The spectral function of dot i is defined as

Ai(ω) = − 1

π
ImGi(ω + iδ), (9)

where Gi(z) = 〈〈diσ ; d†
iσ 〉〉z is the local Green’s function.

Spectra are measurable by tunneling spectroscopy using
weakly coupled additional normal-state or superconducting
probes at finite bias voltage [8,21]. Finite bias drives the system
out of equilibrium. In this work, it is assumed that the coupling
is sufficiently weak (
N/
S � 1), that the nonequilibrium
effects may be neglected, and that the transport properties may
be approximated using equilibrium spectral functions (i.e., the
system remains in the linear response regime). For stronger
coupling of the probe, different transport regimes become
dominant [9,65–67].
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Another quantity of interest is the interdot spectral function

A12(ω) = − 1

π
ImG12(ω + iδ), (10)

where G12(z) = 〈〈d1σ ; d†
2σ 〉〉z, which quantifies interdot corre-

lations of the excitations. If the tunneling probe is coupled to
both dots, the resulting spectrum is proportional to

Im[|v1|2G1(z) + |v2|2G2(z)

+ v∗
1v2G12(z) + v1v

∗
2G21(z)]z=ω+iδ, (11)

providing access to the information contained in G12. Here v1

and v2 are the tunnel couplings of the probe to either QD. Such
a situation occurs in the experiments described in Refs. [21,23],
where the segment of the carbon nanotube actually hosts two
QDs and the probe is attached near the center of the tube.

At a qualitative level the structure of the subgap many-
particle spectra can be described in the superconducting atomic
limit (also known as the wide-gap limit) [15,18,68,69]. It
consists of taking � to infinity at a constant width of the
conduction band. This limit is different from the related
zero-bandwidth limit [69,70], where � is kept constant and
the conduction-band width is reduced to zero (i.e., the band is
replaced by a single representative site). The wide-gap limit
eliminates the continuum of the quasiparticle levels above the
gap and the sole remaining effect of each lead is the proximity
pairing term of the form 
d

†
i↑d

†
i↓ + H.c. We thus obtain a

two-site discrete model with the following Hamiltonian:

H =
∑

i

δi(ni − 1) + U

2

∑
i

(ni − 1)2

+
∑

i

(
eiφi d
†
i↑d

†
i↓ + H.c.) − t

∑
σ

(d†
1σ d2σ + H.c.),

(12)

which can be easily diagonalized. The Kondo correlations due
to quasiparticle states above the superconducting gap are fully
excluded in this description, thus the results are quantitatively
quite different compared to the accurate NRG calculations,
especially when the role of the Kondo effect is increased either
by increasing 
 or by decreasing �. Furthermore, this method
tends to overemphasize the BCS character of singlet states
at the expense of the Kondo character in the exact solution.
Nevertheless, the consecutive order of the lowest levels mostly
match the observed subgap Shiba states. A systematic method
for improving perturbatively upon the superconducting atomic
limit has been described in Ref. [18]. Some further details are
in the Supplemental Material [44].

III. RESULTS

A. Left-right symmetric case, half-filling

We first consider the case of two equal dots at half-
filling, δ1 = δ2 = 0, see Fig. 2. In Fig. 2(a) we plot the
local spectral function A1(ω) = A2(ω) in the frequency range
inside and around the gap, ω ∼ �. In Fig. 2(b) we plot the
interdot spectral function A12(ω), which reveals the transition
from Kondo to the antiferromagnetic regime at t ∼ 10−2,
corresponding to J ∼ TK , then from the antiferromagnetic

FIG. 2. (Color online) Left-right symmetric DQD system at half-
filling. (a) Local spectral function A1(ω). (b) Interdot spectral function
A12(ω): We plot the positive frequency part on a logarithmic scale.

to the molecular-orbital regime at t ∼ 10−1, corresponding to
J ∼ t .

For small t the subgap peaks appear close to the energy
 ≈ 0.6� of the excitations in the single-dot case [44]. While
for a single dot the ground state is a doublet and the excited
state a singlet, for two QDs the lowest-lying many-particle
states are generated by combining two doublet states into a
singlet and a triplet that are split at low t by J ≈ 4t2/U due
to the interdot superexchange coupling. The ground state is
always a singlet at half-filling. The singlet-triplet transition is
not spectroscopically visible as it violates the �Sz = ±1/2
sum rule. Its presence is, however, revealed by a direct
calculation of the many-particle spectrum using the numerical
renormalization group, see the bottom-most panel in Fig. 3.

In the wide-gap limit [Eq. (12)] the triplet state |T 〉 =
d
†
1↑d

†
2↑|0〉 always has zero energy. There are five singlet states,

four of which have energy of order U for t,δ � U . The
remaining singlet state |S1〉 represents the interdot singlet and
it has energy ≈−4t2/U for low t , while at high t it is better
described as the molecular orbital state with two electrons in
the bonding orbital. In the wide-gap limit, the state |S1〉 is the
ground state at δ = 0 for all values of t .

The resonances in the spectral function A1(ω) reveal
the excited doublet states. There are, in fact, two exactly
degenerate doublets. This degeneracy is broken in the presence
of the flux and away from half-filling as we show in the
following subsections. In the t → 0 limit, these spectral peaks
are exactly the same excitations as the doublet-singlet Shiba
resonances in the single-dot case. They persist to finite t ,
although their energy is affected by the interdot coupling.
The shift of the resonance is quadratic for t around 10−2.
This is the region associated with the competition between the
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FIG. 3. (Color online) Expectation values and Shiba state en-
ergies in the left-right symmetric DQD system at half-filling.
Results, where applicable, are shown for both normal-state and
superconducting leads. The arrow indicates the point where the
on-site pairing changes sign and the spin-spin correlations in the
superconducting and normal-state cases start to deviate.

Kondo screening and the superexchange (TK ∼ J ) [44]. The
NRG results show that the doublet-singlet energy difference
is mostly driven by the downward shift of the singlet ground
state which undergoes significant changes as a function of t , as
also revealed by the evolution of the ground-state expectation
values, in particular the spin 〈S1 · S2〉 and pairing correlations
〈d1↑d1↓〉, see Fig. 3.

An important difference between the normal-state and
superconducting case is found for the spin correlation 〈S1 · S2〉
in the small t limit. In the normal case, the Kondo screening
wins over the superexchange and each dot is screened
individually, leading to 〈S1 · S2〉 → 0. In the superconducting
case, the Kondo screening cannot be completed due to the lack
of quasiparticles, thus the two unscreened moments are free
to form a tightly bound local singlet state and 〈S1 · S2〉 attains
values close to the saturation (−0.6). It is also revealing to
observe that the difference in 〈S1 · S2〉 between the two cases
starts to grow near the point where the pairing correlations
〈d1↑d1↓〉 change sign, as indicated by the arrow in Fig. 3.
This is yet another sign that the Kondo screening becomes
ineffective for t lower than this limiting value. Due to nonzero
electron hopping in the model, this passing through zero is a
simple crossover, not a quantum phase transition.

In the opposite limit of very large t , the behavior can be
described in terms of molecular orbitals. In fact, from Fig. 3 it
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FIG. 4. (Color online) Spectral function A1(ω) and the diagram
of the subgap Shiba states for δ = 0 as a function of the supercon-
ducting phase difference φ.

is immediately obvious that in this limit there is little difference
between the normal state and the superconducting case, since
the superconducting gap is positioned in the region of low
spectral density between the bonding and antibonding orbitals,
thus it is ineffective. This is also signaled by the pairing
correlations 〈d1↑d1↓〉 going to zero for large t .

While the spin degrees of freedom are significantly af-
fected by the superconductivity, the charge fluctuations are
approximately the same in both the normal and supercon-
ducting case, as evidenced by nearly overlapping results for
the interdot charge fluctuations 〈(n1 − 1)(n2 − 1)〉 and only
slightly reduced intradot charge fluctuations 〈(n1 − 1)2〉 in
the superconducting state in the Kondo and antiferromagnetic
regimes. The small reduction is due to the opening of the gap
in the density of states and the corresponding reduction of
electron hopping.

1. Flux dependence

We now study the effect of the difference in the super-
conducting phase (i.e., flux through the ring) φ. We show the
results for an intermediately strong t = 10−2 in Fig. 4. The
flux induces a splitting of the doublet Shiba states which are
otherwise degenerate at half-filling. At small φ the splitting in
the superconducting atomic limit is

t
2


2 + t2
φ. (13)
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FIG. 5. (Color online) Dependence on the hybridization strength

 in the left-right symmetric case at half-filling. (a) Subgap Shiba
states for 
 = 0.045. The arrow brings to attention that the interdot
triplet Shiba state is below the interdot singlet state. (b) Spin
correlation function 〈S1 · S2〉(t) for a range of 
 (indicated near
the corresponding curves) across the singlet-singlet crossover at

t ≈ 0.04.

The NRG results also show proportionality to t and φ when
both are small. The splitting is approximately sinusoidal and
largest for φ = π . In the spectral function, the splitting is
actually only faintly visible because of the very unequal
spectral weights: exactly at half-filling, only the lower energy
doublet state appears in the spectra. The singlet-triplet splitting
is hardly affected by nonzero φ, there is only a slight downward
trend in the energy difference, see the bottom panel in Fig. 4.

2. � dependence

We now discuss the role of the hybridization 
. In a single
QD, the doublet-singlet transition occurs for 
 = 
t ≈ 0.04.
In the DQD system, with increasing 
, the doublet excited
states decrease in energy and at 
 ≈ 0.025 an additional
excited singlet also enters the subgap region. This trend
continues until 
 = 
t , where in the limit t → 0 we find
degeneracy of five multiplets: two singlets, two (degenerate)
doublets, and the triplet. For 
 > 
t , the nature of the singlet
ground state changes, since it is associated with two separate
Kondo clouds, rather than with the interdot singlet induced by
the superexchange coupling. Consequently, in this range the
triplet state lies close to the excited singlet state, rather than
the ground state, see Fig. 5(a) where the subgap states are
plotted for 
 = 0.0045 > 
t . Curiously, the interdot triplet is
lower in energy than the interdot singlet state, although the
superexchange coupling would lead to the opposite order. In
the wide-gap limit, the triplet is indeed above the singlet. A
simple interpretation is based on a three level model with two
singlets and a triplet:⎛

⎝εS1 0 α

0 εT 0
α 0 εS2

⎞
⎠, (14)

with εT − εS1 = J = 4t2/U , such that the coupling between
the singlets α is (much) larger than J . In this case a similar
phenomenology is found, with the triplet state moving from

a value above the ground-state singlet to a value below the
excited singlet as εS2 − εS1 changes sign, as happens at 
 =

t . Numerical results indicate that α ∝ t , thus the requirement
α � J is fulfilled for the relevant range of t .

A further difference between the 
 < 
t and 
 > 
t

regimes is manifest in the t dependence of 〈S1 · S2〉 on the
approach to the decoupled-dot t → 0 limit, see Fig. 5(b).

In the superconducting atomic limit, this transition corre-
sponds to the transition from the interdot singlet state |S1〉 with
energy ≈−4t2/U to the on-site-singlets state |S2〉 with energy
≈U − 2
. The wide-gap limit does not distinguish between
BCS and Kondo singlets, thus |S2〉 has characteristics of a
state with strong on-site BCS pairing, but at finite � the NRG
results show that the corresponding many-particle state should
rather be described as two separate Kondo clouds. It should
also be noted that this is a true transition only strictly at t = 0.
For finite t , it is a smooth crossover.

Irrespective of the value of 
 and of the nature of the
ground-state singlet, we find that the excited singlet state al-
ways monotonously increases in energy with t and the spectral
functions are qualitatively always very similar. There are no
quantum phase transitions between singlets as a function of t .
This issue is discussed further in Sec. IV where the model
without particle hopping but only exchange interaction is
studied: that model has a true quantum phase transition.

3. V dependence

We now discuss the effects of the interdot capacitive
coupling V at half-filling. For moderate V � U , the effect of
V is only quantitative and rather weak. As V increases, there
is an increase in energy of the double-occupancy integer-spin
Shiba states (seen through a decreasing energy of the excitation
to the odd-occupancy half-spin, i.e., doublet, Shiba state), and
an enhancement of the exchange coupling J :

J = 1

2
[
√

(U − V )2 + 16t2 − (U − V )] ≈ 4t2

U − V
. (15)

Both tendencies are visible in the numerical results in Fig. 6. At
V = U , the system enters a phase with increased symmetry
and enhanced Kondo temperature in the normal state if the
interdot tunneling t is small, while for V > U the electrons
tend to localize on a single site and form “local charge
singlets” in the charge-ordering regime [35,71,72]. In the
superconducting case at finite t , these trends are visible
as a crossover at V ∼ U . Although there is no change of
the ground state, its nature changes significantly. For V �
U , the lowest energy Shiba state is characterized by near
zero spin correlations 〈S1 · S2〉 ∼ 0, large interdot charge
fluctuations 〈(n1 − 1)(n2 − 1)〉 → −1, and negative on-site
pairing 〈di↑di↓〉 < 0. These are indeed the signatures of the
charge-ordering regime. For large V , there is a single Shiba
excited state inside the gap, which is also of local charge singlet
kind. The excitation energy in fact corresponds to the splitting
between the 1√

2
(|2,0〉 ± |0,2〉) eigenstates, which is equal to

the isospin exchange coupling

Jiso = 4t2

V − U
, (16)
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FIG. 6. (Color online) Dependence on the interdot capacitive
coupling at half-filling.

and decreases with increasing V . Close to the crossover point
at V ∼ U , the behavior is particularly complex for small t ;
see the case of t/D = 10−3, upper panel in Fig. 6. In this case
we even observe three subgap singlet states, which is a unique
occurrence. Two of these are the local charge singlets and the
third is the interdot spin singlet. In the t → 0 limit, these three
singlets would combine with the interdot spin triplet to form a
sixfold degenerate ground state with SU(4) symmetry.

B. Left-right symmetric case, away from half-filling

At small t the spectra away from half-filling, Fig. 7(a),
look similar to those in the single dot limit [44], however
a closer look at the subgap states reveals some interesting
details, Fig. 7(b). At δ ∼ 0.1 there appears to be a transition

between two different singlet ground states, which is actually
a rapid crossover. For δ < 0.1, the ground state of a single
dot is a spin doublet Shiba state, thus the DQD systems has
nearly degenerate singlet and triplet states for low t . The lowest
spectroscopically observable excitations are the two doublet
states which decrease in energy  as δ increases; these doublets
correspond to one of the QDs having a quasiparticle bound to
it. As  drops below 0.5�, an additional singlet state enters the
subgap range. This state can be interpreted as the state where
both QDs have one quasiparticle attached each. The ground
state for δ > 0.1 is indeed of this type.

In the crossover region the excited singlet state occurs
approximately at the sum of energies of the two doublet Shiba
states, thus it is pushed together with these two states to higher
energies as t increases. The spectra for larger t are shown
in Figs. 7(c) and 7(d). Finiteness of excitation energies to
the doublet states is confirmed by inspecting the spectrum of
the subgap excitations (bottom panel in Fig. 8). Despite the
continuous evolution of the ground state as a function of δ, its
nature is not the same at δ = 0 as in the large |δ| limit, see other
panels in Fig. 8. Most notably, the pairing expectation value
〈d1↑d1↓〉 has opposite signs. The |δ| � 0.1 ground state is the
interdot singlet |S1〉 formed by unscreened local moments.
For |δ| � 0.1, the ground state is close to |S2〉, which can also
be thought of as two separate Kondo compensated states with
quasiparticles attached. The energy of |S2〉 away from half-
filling evolves as ≈U − 2
 − δ2/
. In the wide-gap limit it
thus becomes important at δ of order

√
U
 which is the charge

fluctuation scale in the single-impurity Anderson model. For
very large δ the dots are unoccupied and play no role, thus
the system is a simple BCS superconductor. As expected, the
main component of |S2〉 for large δ is the empty state |0〉.

It may be noted that the singlet ground state for δ � 0.1 is
actually similar in nature to the singlet ground state for δ = 0
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δ
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0.4
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1
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G
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(a)

(b)
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(d)

FIG. 7. (Color online) Spectral function A1(ω) in the left-right symmetric DQD system away from half-filling. (a) Small interdot tunneling
t = 10−3. (b) Subgap Shiba state diagram for t = 10−3. In the range δ ∼ 0.1, the S = 1/2 and the excited S = 0 state have small but nonzero
energy. (c) and (d) Spectra at stronger interdot coupling.
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FIG. 8. (Color online) Expectation values in the left-right sym-
metric DQD system away from half-filling. The value of t is the same
as in Fig. 7(c). Note the position of the triplet state below the excited
singlet for δ > 0.1.

at 
 > 
t discussed in the previous subsection. One could
draw a phase diagram in the (
/U,δ/U ) plane delineating
the parameter ranges where the single ground state is either
of type |S1〉 or |S2〉. In the t → 0 limit, this line would be
well defined and would, in fact, coincide with the singlet-
doublet QPT line of the single QD problem. At t �= 0, the
QPT is however replaced by a crossover with a width roughly
proportional to t .

1. Doublet splitting

While at δ = 0 the doublet excitations are degenerate,
there is a splitting induced by the interdot coupling of order
proportional to δt . This can be understood as the formation of
molecular orbitals by the quasiparticle attached to the dots and
can be understood within the superconducting atomic limit.
The eigenvalues of the doublet states are

1
2

(
U ± {

2
(
2t2 + 2
2 + δ2

1 + δ2
2

±
√

[4t2 + (δ1 − δ2)2](δ1 + δ2)2
)}1/2)

, (17)

which for δ = δ1 = δ2 simplifies to

U

2
±

√

2 + (t ± δ)2. (18)

(The two ± signs in this expression are independent.) For
t = δ = 0 these energies are

U

2
± 
, (19)

each being doubly degenerate. These corresponding states are
of the form

1√
2
d
†
1σ (1 ± d

†
2↑d

†
2↓)|0〉, (20)

and the analogous states with 1 ↔ 2. The degeneracy is lifted
when both t and δ are nonzero, the splitting being

2δt



(21)

to lowest order in t and δ. This can be interpreted as the bond
formation (t �= 0), with bonding-antibonding splitting emerg-
ing only away from half-filling (δ �= 0) in the superconducting
case because one-particle and three-particle states are mixed.

For intermediate interdot coupling, see the t = 10−2 case
in Fig. 7(c), the splitting of the doublet Shiba states is clearly
visible. We notice that the asymmetry of the particlelike (ω >

0) and holelike (ω < 0) transitions exists for both branches.
At larger t = 2.15 × 10−2, the higher-energy doublet state is
already essentially merged with the continuum and is hardly
spectroscopically observable. For even larger t ∼ 0.1 (not
shown) the system is in the molecular orbital regime and the
two dots behave as a single large quantum dot which undergoes
Kondo screening when δ is appropriately tuned and therefore
manifests the singlet-doublet transition.

We remark on the decreasing spectral weight of the subgap
states as they approach the gap edges at ω = ±�, already
observed and discussed for the case of a single quantum dot in
Ref. [15]. This is very visible in Fig. 7, as well as in all other
spectra in the following, and appears to be a general property.
The subgap states always merge with the continuum in such a
way that the energy evolves continuously.

2. Flux dependence

We now consider the flux dependence at δ �= 0. The main
effect for small δ and t is some initial (φ = 0) splitting
of the doublet Shiba state, otherwise the results are rather
similar to those shown in Fig. 4. For larger δ ≈ 0.1 in the
valence fluctuation region, the behavior is more interesting
and the flux can induce a quantum phase transition by strongly
increasing the splitting between the doublet states, see Fig. 9.
This type of the phase transition will be studied in depth
in the following sections. Here we comment on some other
features: (a) both doublet excitations are now spectroscopically
observable, unlike at half-filling, (b) the singlet-triplet splitting
is now more significantly affected by nonzero φ, and (c) the
second singlet state is also significantly φ dependent (in fact,
the two singlet states merge at φ = π in the t → 0 limit). There
is a significant spectral weight redistribution across the phase
transition, thus it should be easily experimentally observable.

3. V dependence

In the normal state, the interdot capacitive coupling leads
to nontrivial effects also at quarter-filling [40,41,43]. For
sufficiently large V (which does not need to be comparable in
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FIG. 9. (Color online) Spectral function A(ω) and the diagram
of the subgap Shiba states for δ1 = δ2 = 0.1 as a function of the
superconducting phase difference φ.

value to U ), a local moment fixed point emerges in the valence
fluctuation range, with the occupancy pinned to one quarter.
In this regime, the degeneracy between the |0,↑〉, |0,↓〉, |↑,0〉,
|↓,0〉 states leads to a SU(4) Kondo effect different from
the one at half-filling (which requires fine tuning V ≈ U ).
For exact degeneracy, there must be no interdot tunneling,
otherwise there is a splitting into bonding and antibonding
molecular orbitals and a regular SU(2) spin Kondo effect is
expected.

We find signatures of these effects also in the supercon-
ducting case. The results for moderately large V/D = 0.1
are shown in Fig. 10 for two values of interdot tunneling t .
Compared to the V = 0 case, we find a range of δ where
quarter-filling is stabilized and the ground state is a spin
doublet. For t = 0, both doublets would be degenerate, but
at finite t we find a splitting of order t . In this range of
δ, both singlet and triplet Shiba states are spectroscopically
visible.

C. Generic case: Unequal dots

We fix the on-site energy of one of the dots (δ2) and vary
the other (δ1). We do so for different choices of δ2: at δ2 = 0
(dot 2 in the Kondo regime) and δ2 = 0.1 (dot 2 in the valence
fluctuation regime).
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0.8

1

E
/Δ
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S=1/2
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V/D=0.10.2
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0.6

0.8

1

E
/Δ

t=10
-3

t=10
-2

FIG. 10. (Color online) Subgap Shiba state diagram at finite
interdot capacitive coupling V/D = 0.1. Top panel: t = 10−3, to
be compared with Figs. 7(a) and 7(b). Bottom panel: t = 10−2, to
be compared with Figs. 7(c) and 8. The arrows indicate the new
feature: a region close to the VF point where the interdot coupling
induces a phase transition to the doublet state, corresponding to the
emergence of a local moment regime with a single electron in the
DQD (quarter-filling).

1. Dot 2 in the Kondo regime

In Fig. 11 we plot the results for δ2 = 0. At small t = 10−3,
top row, the dots are nearly decoupled, thus dot 1 shows the
evolution vs δ typical of a single QD, while the spectrum on dot
2 shows peaks at constant energy of  = 0.6�, as expected
for δ2 = 0. The interdot effects become visible around t =
2 × 10−3 in the form of weak features of A1(ω) mirrored in
A2(ω), which then amplify and mix with the Shiba states of
dot 2. By t = 10−2, center row in Fig. 11, the structure of the
subgap states is already quite complex and the superexchange
J needs to be invoked to explain all features. The evolution
of the spectral weights is nontrivial and discontinuous at the
point where the ground state changes from singlet to doublet.

As an aid in the interpretation, we show in Fig. 12 the subgap
many-particle spectrum. The transition occurs at δ1 ≈ 0.1. For
δ1 < 0.1, the spectrum is similar to that in the t → 0 limit:
the ground state is a singlet, and with increasing δ1 one of the
doublet states comes down in energy and becomes the new
ground state. The effect of nonzero t is visible in the slightly
increasing (vs δ1) energy of the other doublet state and in the
singlet-triplet splitting. The most interesting features occur
for δ1 � 0.1. The differences between A1(ω) and A2(ω) are
notable. In A2(ω), the most pronounced features correspond
to the transitions from the doublet GS to the two excited singlet
states, while the transition to the triplet state is not visible at
all. In A1(ω), on the other hand, the dominant feature is the
transition from the doublet GS to the triplet excited state, while
the weights for the transitions to the singlet excited states are
much weaker. Since in the atomic limit the triplet state does not
depend at all on δi , nor on t , and the lowest lying singlet state
depends on these parameters only very weakly, the differences
between the two spectra are predominantly due to the different
site amplitudes of the doublet wave function. The very strong
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FIG. 11. (Color online) Spectral function on dot 1 (left panels) and dot 2 (right panels) for a range of interdot couplings t . The quantum
dot 2 is kept at δ2 = 0, which is the Kondo regime. The arrows mark the different spectroscopically observable excited states (ES).

transition on the particle side (ω > 0) of A1(ω) is due to the
charge depletion by high on-site potential which leads to strong
enhancement of the matrix element for the particle addition.

For δ1 � 0.1, the only resonance remaining inside the gap
is that corresponding to the Shiba state on dot 2: it is positioned
at 0.6� in the large δ1 limit where dot 1 has little effect on dot 2
in the subgap energy range. Other subgap states are pushed into
the continuum, since dot 1 no longer has a magnetic moment.
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FIG. 12. (Color online) Subgap spectrum corresponding to the
center row in Fig. 11.

For large t = 4.62 × 10−2, bottom row in Fig. 11, we enter
the regime of a single effective QD, thus the variation of
the subgap state manifests in a similar way in both spectral
functions, except for the differences in spectral weights due to
the different on-site energies.

2. Dot 2 in the valence fluctuation regime

We now consider the case of δ2 = 0.1 where the second
quantum dot is in the valence fluctuation regime, see Fig. 13.
The symmetry δ1 ↔ −δ1 is lost and we need to consider the
full range for δ1. The results for δ1 ∼ 0 have been discussed in
the previous subsection (with the roles of δ1 and δ2 reversed),
thus we focus on the cases where δ1 is itself in the valence
fluctuating range |δ1| ≈ 0.1.

For δ1 > 0 we find a transition to a doublet ground state
at δ1 ≈ 0.14. For larger δ1, the excited singlet state remains at
low energies, while all other Shiba states move up in energy
and merge with the continuum. In this regime, dot 1 is fully
depleted, thus the Shiba spectrum is determined by dot 2
which is very close to the occupancy controlled singlet-doublet
transition. Consequently, this leads to a spectral resonance very
close to ω = 0 for all δ1 � 0.14.
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FIG. 13. (Color online) Spectral function on dot 1 (left panels) and dot 2 (right panels) in the superconducting state for a range of interdot
couplings t . The quantum dot 2 is kept at δ2 = 0.1, which is the valence fluctuation regime. The last row shows the corresponding many-particle
Shiba state diagrams.

For δ1 < 0, the behavior is rather different. Dot 1 is
progressively filled, moving across the valence fluctuation
point at δ1 = −0.1. The ground state is a singlet for all
negative δ1, but the doublet excitations undergo an interesting
evolution, namely at δ1 = −0.1 we find a crossing of two
different types of the doublet excitations. This is the same type
of degeneracy of the doublet states as found at half-filling in
the left-right symmetric problems. The level crossing is thus a
sign of a symmetry which is established at δ1 = −δ2, namely
a combination of reflection and particle-hole transformation,
which leaves the Hamiltonian invariant. Again, there is a
spectral peak close to ω = 0 for δ1 < −0.1. In this case, the
residual coupling to dot 2 leads to a different order of Shiba

states, i.e., the ground state is a doublet, while the excited state
is a singlet. For large negative δ1 this order should eventually
be reversed again, because the excitation spectra for δ1 → ±∞
are expected to be the same.

Finally, we briefly discuss the results for the case where
one of the dots (dot 2, for definitiveness) is driven to the
empty orbital regime by tuning δ2 to a large value well above
U/2 + 
 ≈ 0.15. The system then essentially behaves as a
single quantum dot; this includes also the level diagram of the
Shiba states. Even though dot 2 is unoccupied, at finite interdot
coupling there are still some faint features from A1(ω) being
mirrored into the spectral function A2(ω) (results not shown).
As t grows one can smoothly reach the regime of molecular
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orbitals. To conclude, for large δ2 the DQD always effectively
behaves as a single quantum dot: for small t , the effective dot
is the physical QD 1, and for large t it is the “large” QD made
of molecular orbitals spanning both dots. These two regimes
are smoothly connected.

IV. TWO-IMPURITY KONDO “CRITICALITY”

In the DQD with normal-state leads the low-temperature
physics is governed by the two-impurity Kondo effect. The
non-Fermi-liquid (NFL) fixed point of this model is never
actually reached because the particle exchange between the
leads is a relevant perturbation (in the renormalization group
sense) [73], but its presence still has important effects in
a wide parameter range. In Sec. III B we observed that
at half-filling the ground state is the same singlet many-
particle state for any value of t ; this is the case for any

/U ratio. This continuity is the superconducting counterpart
of the crossover behavior found in the normal state. The
presence of the two-impurity Kondo model fixed point is thus
only felt through the nontrivial evolution of the expectation
values, in particular that of the spin-spin correlation function
〈S1 · S2〉(t).

The NFL fixed point can be approached in the normal
state arbitrarily closely if the particle exchange between the
two channels is suppressed while the magnetic exchange
coupling is maintained [73]. We consider here how this
scenario manifests in the superconducting case through the
properties of the subgap states. The interdot coupling term in
the Hamiltonian is thus replaced by

H12 = JS1 · S2, (22)

where Si are the spin operators of the impurities.
The results are shown in Fig. 14 for a value of 
/U

in the suitable range for a competition between the singlet
ground states (a) consisting of two separate Kondo clouds
and (b) intersite singlet generated by the superexchange
coupling 4t2/U . We indeed observe a genuine quantum
phase transition (level crossing) between the two singlets at
J = Jc ≈ 1.1 × 10−3. State (a) is characterized by near-zero
spin correlations 〈S1 · S2〉 ≈ 0, while state (b) is an intersite
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FIG. 14. (Color online) Two-impurity Kondo effect manifesting
through the quantum phase transition between two different many-
particle subgap singlet states in the model with exchange coupling J

between the dots and no particle transfer (t = 0).

singlet state with large spin-spin values. All other system
properties also change discontinuous across the transition [see
the example of the charge fluctuations 〈(n1 − 1)2〉 also shown
in Fig. 14].

The excited singlet subgap state is not directly spectro-
scopically observable in tunneling experiments. Nevertheless,
the phase transition does manifest as a visible spectral
discontinuity: there is a kink in the energy of the doublet
excitation, and the spectral weights have a jump (results not
shown). Alternatively, the radio-frequency spectroscopy could
be used [34]. The two-impurity Kondo effect quantum phase
transition is thus in principle spectroscopically observable, if
only a system with sufficiently suppressed particle exchange
could be physically realized [73].

This section may be concluded with the following ob-
servation: In the normal-state case, the two-impurity Kondo
quantum phase transition is a second-order transition with
true quantum criticality, while in the superconducting case
it is a first-order transition (i.e., level crossing between two
subgap singlet states that are separated from the quasiparticle
continuum). An interesting question for future work is to
explore the structure of the excitations in the continuum above
�: Are the Bogolioubov states formed out of Fermi liquid
or non-Fermi liquid quasiparticles? For � < T 2IK

K , the latter
should be the case.

V. CONCLUSION

Double quantum dots are described by impurity models
with properties controlled by a number of fixed points. To
each fixed point (regime) it is possible to associate particular
features observed in the subgap spectra. In this work double
dots were studied with a quantitatively accurate method focus-
ing on the regimes of strong dependence on model parameters
that could be targeted by future experiments. Qualitative trends
can be reproduced in the superconducting atomic limit which
projects out the continua of the quasiparticle states above �

by taking the � → ∞ limit, while for quantitative correctness
it is crucial to use a nonperturbative technique such as the
NRG, especially in the regimes where the Kondo effect plays
an important role.

We now summarize the main experimentally verifiable
predictions of this work:

(1) The Kondo, antiferromagnetic, and molecular-orbital
regimes at half-filling can be distinguished by the features in
the spectral function both inside and outside the gap.

(2) The splitting of the doublet excited states induced by
the flux (difference of superconducting phases) is only visible
away from half-filling and is proportional to the interdot
coupling.

(3) In the large hybridization regime, the interdot triplet
state has lower energy than the interdot singlet state due to the
level repulsion between the singlet Shiba states.

(4) At half-filling, the interdot capacitive coupling leads to
a crossover at V ∼ U between spin-singlet and charge-singlet
regimes.

(5) At quarter-filling, the interdot capacitive coupling
generates a quantum phase transition to a doublet ground
state which corresponds to the local-moment fixed point with
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fourfold degeneracy in the t → 0 limit (finite t leads to a
splitting of the doublet states).

(6) By tuning one dot to the Kondo regime and the other
to the valence fluctuation regime, the ground state becomes a
doublet and both singlet and triplet excitations can be observed:
the triplet state have high spectral weight on the valence
fluctuating dots, while the singlet state is better observed on
the half-filled dot in the Kondo regime.

(7) By tuning both dots to the valence fluctuation regime,
one fluctuating between zero and single occupancy, the other
between double and single occupancy, the system has com-
bined reflection and particle-hole transformation symmetry,
leading to a crossing of the excited doublet states.

The transitions which change the spin by 1/2 are directly
observable in tunneling spectroscopy, while radio-frequency
spectroscopy would uncover further transitions. It should be
stressed that some of the most interesting features are present
(or become observable) only away from half-filling. The
valence fluctuation and local moment regimes near quarter-
filling are just as intriguing, if not more, as the Kondo regime
at half-filling.
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