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Spectral properties of Shiba subgap states at finite temperatures

Rok Žitko
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Using the numerical renormalization group (NRG), we analyze the temperature dependence of the spectral
function of a magnetic impurity described by the single-impurity Anderson model with a superconducting host.
With increasing temperature the spectral weight is gradually transferred from the δ peak to the continuous subgap
background, and both spectral features coexist at finite temperatures: the δ peak persists to temperatures of
order �. The continuous background is due to inelastic exchange scattering of Bogoliubov quasiparticles off the
impurity, and it is thermally activated since it requires a finite thermal population of quasiparticles above the gap.
In the singlet regime for strong hybridization or away from the particle-hole symmetric point (charge-fluctuation
regime) an additional subgap structure is observed just below the gap edges. It has thermally activated behavior
with an activation energy equal to the Shiba state excitation energy.
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I. INTRODUCTION

A magnetic impurity in a superconducting host induces
localized bound states inside the spectral gap, known in
different communities as either Shiba, Yu-Shiba-Rusinov, or
Andreev bound states [1–10]. At zero temperature, Shiba
states manifest as pairs of δ-peak resonances in the impurity
spectral function A(ω) positioned symmetrically at positive
and negative frequencies corresponding to the transitions from
the many-particle ground state to the same many-particle
excited state by either adding a probing electron to the system
(ω > 0) or removing it (ω < 0). The intrinsic temperature
dependence of the spectral function depends on the impurity
dynamics. When the impurity behaves as a classical object,
i.e., as a local magnetic field which is perfectly static on
the time scale of the experiment (“adiabatic limit” with no
dynamics of the internal degrees of freedom of the impurity),
the corresponding classical impurity model is a quadratic
noninteracting Hamiltonian; hence the spectral function is not
temperature dependent at all. This problem can be discussed
in terms of single-particle levels and their occupancy. When
the impurity behaves, however, as a quantum object, i.e.,
a fluctuating local moment as described by the Kondo or
Anderson quantum impurity models, there will be nontrivial
intrinsic temperature dependence due to electron-electron
interactions (inelastic exchange scattering of thermally excited
Bogoliubov quasiparticles off the impurity spin). This problem
is better addressed from the perspective of many-particle
eigenstates. Since the eigenvalue spectrum of the Hamiltonian
operator includes both discrete subgap states and a continuum
part above the gap, it is expected that there will be both δ

peaks and a continuous background coexisting inside the gap
at any finite temperature, providing a further realization of the
“bound state in the continuum” paradigm.

There are only few experimental works where the temper-
ature dependence of the transport properties of the impurity
systems in the subgap region has been discussed. The strong
temperature effects found in the differential conductance in
carbon nanotube quantum dots were accounted for using
the tunneling formalism without the need for invoking any
intrinsic temperature dependence of the impurity spectral

function itself [11]. The most notable effect was the reversal
of the curvature in the secondary spectral features which
can be explained through the thermal occupation of the
excited subgap states. Another experimental realization of
impurity models is magnetic adatoms on superconducting
surfaces. In Ref. [12] the measured differential conductance
at two different temperatures was discussed in terms of
a phenomenological impurity model based on a classical
impurity with the relaxation dynamics described as an extrinsic
process. For weak tip-sample tunneling, the relaxation rates
associated with the adatom-substrate coupling are faster than
the tip-substrate tunneling, and the current is dominated
by the single-particle current. For stronger tip-sample tun-
neling, the tunneling rates are comparable to or larger than the
adatom-substrate relaxation, and the Andreev current becomes
important.

While the position and weight of the Andreev states inside
the gap can be easily extracted from both the experimental
differential conductance (dI/dV spectrum) and the computed
impurity spectral function (imaginary part of the Green’s func-
tion) and compared to validate theoretical models [7,13–15],
it is much more difficult to reliably deconvolve the differential
conductance with the aim of extracting the impurity spectral
function and studying the detailed distribution of the spectral
weight within the gap, in particular the width. The primary
reason is that there are multiple processes contributing to
transport (primarily single-particle tunneling and Andreev
processes) [12]; thus model-independent deconvolution cannot
be performed since there are contributions from both normal
and anomalous parts of the Green’s function. In addition,
the presence of the probing electrode (whether normal state
or superconducting) induces some extrinsic broadening that
needs to be subtracted out [12,16]. It is, however, possible
to proceed in the other direction: assuming a specific model,
one can compute the spectral function and then determine
the differential conductance through integration. There is,
however, a lack of theoretical works on the intrinsic tem-
perature dependence of impurity spectra. Thermal effects
are commonly added through phenomenological parameters
by assuming certain relaxation rates or specific forms of
the superconductor density of states (Dynes parameter for

2469-9950/2016/93(19)/195125(10) 195125-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.195125
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smearing the coherence peaks), but little is known about
quantitative behavior of microscopic models. The reasons are
technical, as will be discussed at length in a later section
of this paper. This work represents an attempt using the
numerical renormalization group and achieves qualitative
understanding of the intrinsic subgap temperature dependence
due to electron-electron (e-e) interaction on the impurity site,
while there are still significant quantitative systematic errors.

In this work we study the subgap spectral features in the
single-impurity Anderson model with a superconducting bath
described by the s-wave BCS mean-field Hamiltonian. After
introducing the model and methods in Sec. II, with an emphasis
on the technical challenges, we first consider the model by
fixing the gap parameter � to its zero-temperature value
and increasing the temperature T in Sec. III. This simplified
calculation uncovers how the spectral weight is transferred
from the subgap δ peak to the continuum. In this section we
also study the hybridization and impurity level dependence and
the differences between the singlet (screened impurity) and
doublet (unscreened impurity) regimes. In Sec. IV we perform
a full calculation with the temperature-dependent gap of a
BCS superconductor; in this case the subgap peak broadening
is accompanied by peak shifts. We conclude with a discussion
of the possible experimental relevance of the results.

II. MODEL AND METHOD

We consider the Hamiltonian H = HBCS + Himp + Hc:

HBCS =
∑
kσ

εkc
†
kσ ckσ − �

∑
k

(c†k↑c
†
k↓ + H.c.),

Himp = εd

∑
σ

nσ + Un↑n↓, (1)

Hc =
∑
kσ

Vk(c†kσ dσ + H.c.).

Here ckσ and dσ are the band and impurity electron annihilation
operators, εk is the band dispersion relation, � is the BCS gap
parameter, εd is the impurity level, U is the e-e repulsion,
nσ = d†

σ dσ is the impurity occupancy operator, and Vk are
the hopping integrals. The Hamiltonian does not include any
coupling to electromagnetic noise or phonons since we focus
on intrinsic subgap-state broadening due to local intraimpurity
interaction effects.

Assuming a flat band with the density of states ρ in
the normal state and Vk ≡ V , the impurity coupling is fully
characterized by the hybridization strength � = πρV 2. The
Kondo exchange coupling at the particle-hole symmetric point
εd = −U/2 and for � = 0 is given by the Schrieffer-Wolff
transformation as ρJK = 8�/πU , and the Kondo temperature
is [17]

T 0
K ∼ U

√
ρJK exp

(
− 1

ρJK

)
. (2)

In the superconducting case with � �= 0, the ground state
of the system is either a singlet |S〉 or a doublet |D〉 depending
on the value of the ratio �/T 0

K . All other eigenstates are, in
the first approximation (i.e., neglecting residual interactions
between the quasiparticles), product states of either |S〉 or |D〉
with additional Bogoliubov quasiparticles from the continuum.

Do

Co

odd parity

De

Ce

even parity

A

B

A’

FIG. 1. Schematic diagram of the many-particle eigenstates of
the Hamiltonian, partitioned into the even- and odd-fermion-parity
sectors (i.e., with respect to the parity of the total electron number).
This diagram corresponds to the case where the ground state has
odd fermion parity (spin doublet). Do and De are the odd-parity
(spin-doublet) |D〉 and the even-parity (spin-singlet) |S〉 discrete
eigenstates. The even-parity continuum Ce starts at energy � above
the odd-parity discrete state Do since the bottommost states of the
continuum are composed of one additional quasiparticle added to Do,
thus changing the overall fermion parity. The odd-parity continuum
Co starts at energy � above the even-parity discrete state De for
similar reasons. Labels A and A′ indicate sharp transitions with
ω = ε (contributing to the subgap δ peak in the impurity spectrum),
and the label B indicates diffuse transitions with ω �= ε (generating
the continuous background in the spectrum). A corresponds to the
transition between the many-particle states below the continuum
edge, while A′ form a set of similar transitions in the presence of
a thermally excited quasiparticle, but totally elastic as far as the
quasiparticles are concerned. In the absence of electron-electron
interaction, there are no B transitions. Multiple-quasiparticle states
are not shown; they start at 2� above Do.

While the total particle number is not a conserved quantum
number for � �= 0, its parity is. The eigenstates can thus
be classified into odd- and even-fermion-parity sectors, as
illustrated for the case of an odd-parity (spin-doublet) ground
state in Fig. 1. A quasiparticle is an object with odd fermion
parity; thus the even-parity continuum starts at the energy
� above the odd-parity ground state, while the odd-parity
continuum starts at the energy ε + � above the ground state,
where ε is the subgap-state “energy,” more precisely, the
energy difference

ε = |ES − ED| (3)

between the subgap many-particle Shiba states.
In this work we are interested mainly in the spectral

functions at finite T . The calculations are performed with
the numerical renormalization group (NRG) [3,16,18–24].
This method appears at first perfectly suited for the problem
since it is an unbiased nonperturbative numerical technique,
applicable at both zero and finite temperatures, which can
handle an arbitrary bath density of states (including with
a superconducting gap), and provides the spectral function
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directly on the real-frequency axis. Other methods are either
biased, perturbative, inapplicable to the superconducting case,
or require an analytical continuation from the Matsubara axis
to real frequencies; in particular, this last issue makes the
quantum Monte Carlo (QMC) approach of little use since it
is extremely difficult to perform an analytical continuation in
the presence of a sharp gap, especially since it is necessary
(see below) to resolve a δ peak superposed on a continuous
background of finite support inside the gap. Nevertheless,
the situation under study in this work is in some regards
perhaps the worst possible case for the NRG. While the
method works very well for problems with a spectral gap at
zero temperature and for nongapped baths at any temperature,
there are severe difficulties when both � and T are nonzero.
Both the gap and the temperature break the scale invariance
on which the method is based, and they do so in different
ways, thereby generating inevitable systematic errors. The
results for spectral functions presented in this work should
thus be considered as qualitatively correct, while quantitative
errors are estimated (by monitoring how the results fluctuate
when the NRG calculation parameters are varied) to be in
the tens of percent range for T ∼ �. In spite of this major
shortcoming, there is presently no other impurity solver to
meaningfully study the finite-temperature spectral function
in this problem. Static properties, such as the expectation
values of various operators, can be reliably computed using
the QMC [13,25]. Even here, there are some small systematic
discrepancies between the QMC and NRG when both� and
T are nonzero. Such comparisons of static properties are
very useful to tune the parameters of the NRG to the values
where such discrepancies are minimal. Finally, we note the
fortunate fact that the finite-temperature problems in the NRG
become severe when U is small, while they seem to be more
manageable in the deep Kondo regime which is of main interest
in this study.

The NRG calculations were performed with the discretiza-
tion parameter 
 = 2, with Nz = 8 interleaved discretization
grids [26,27], using the full-density-matrix algorithm with
the Wilson chain terminated at the energy scale Echain =
�/50 [28–30]. The “traditional” choice of the discretization
parameter 
 = 2 proved to be near optimal. The results
depend little on the choice of the discretization method [27].
The length of the Wilson chain, however, turned out to be
a critical parameter and had to be tuned. To obtain a good
description of the continuum part of the subgap spectrum at
finite temperatures, it furthermore proved crucial to keep a
large number of states in the NRG iteration even at energy
scales below �, much more than required for obtaining well-
converged thermodynamics and T = 0 spectral functions;
we kept at least 2500 multiplets. While computationally
demanding, this is critically important for a good description
of the continuum quasiparticle spectrum in both the even- and
odd-parity parts of the full Fock space [31].

The impurity Green’s function is defined as

G(t) = −iθ (t)Tr{ρ[dσ (t),d†
σ (0)]+}, (4)

where the trace is evaluated with the grand-canonical density
matrix ρ = e−βH (the chemical potential is fixed to μ = 0).
This is an appropriate description only for well-equilibrated
ergodic systems. The assumption of ergodicity is nontrivial

and may not be valid in all impurity systems and under all
experimental conditions. Furthermore, the presence of the
tunneling contacts will drive the system out of equilibrium.

The impurity spectral function,

A(ω) = − 1

π
ImG̃(ω + iδ), (5)

where G̃ is the Fourier transform of G, can be expressed using
the Lehmann decomposition as

A(ω) = 1

Z

∑
mn

|〈m|dσ |n〉|2

× (e−βEm + e−βEn ) δ(ω + Em − En), (6)

where m,n index all eigenstates of the Hamiltonian, Em,n

are the corresponding eigenvalues, β = 1/kBT , and the
grand-canonical partition function is Z = Tr[exp(−βH )] =∑

m exp(−βEm). The actual calculation of A(ω) is performed
using the full-density-matrix algorithm [30], generalizing the
complete-Fock-space approach [28,29], which has a signifi-
cantly more complex Lehmann-like spectral decomposition.
We accumulate the raw spectral data separately for |ω| < �

and |ω| > �. Inside the gap, we use 5000 equidistant bins.
Outside the gap, we use a logarithmic mesh of bins with
low-frequency accumulation points at ω = ±� and with 1000
bins per frequency decade. This modification of the standard
binning is necessary for obtaining constant spectral resolution
inside the gap and a correct description of the gap edges in the
continuum above the gap [32].

The Green’s function probes the single-particle excitations
of the system. It should be emphasized that all contributions
to G correspond to electron-parity-changing transitions (see
Fig. 1). Let us consider the doublet regime, where the impurity
spin is unscreened and the ground state is the odd-parity spin
doublet |D〉. At zero temperature, only the ground state Do is
thermally occupied, and the only transition with �E < � is
that to the discrete excited state De (transition A indicated by
the sharp arrow in Fig. 1). The subgap part of the spectrum is
thus fully described by two δ peaks at positions ω = ±ε with
equal weight (at the particle-hole symmetry) given by

Wδ(T = 0) = 1
2 |〈Do|dσ |De〉|2. (7)

At finite temperatures there are further transitions with starting
and end states separated by less than �: they are indicated
by the arrow labeled A′ (representing an infinite set of
transitions with exactly ω = ε) and a diffuse arrow B in Fig. 1.
They correspond to transitions from the thermally populated
even-parity quasiparticle states at energies above � (set Ce)
to the odd-parity quasiparticle states at energies above ε + �

(set Co). The set A′ corresponds to perfectly elastic processes
and also contributes in the absence of interaction U , while
the set B corresponds to inelastic exchange scattering of
quasiparticles and is due to the electron-electron interaction on
the impurity site. Since the states involved in B form continua,
this will generate a continuous spectral weight contribution
to the subgap spectrum. The most likely transitions are those
from the bottom of Ce to the bottom of Co; thus the continuum
background is expected to be peaked at |ω| = ε, i.e., at the
position of the discrete subgap state, which itself persists
at finite temperature at least up to T ∼ �. The evolution
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with increasing T is thus expected to be as follows: the
weight of the δ peak decreases, while the weight of a new
broad peak centered at the same position increases. In the
next sections, we confirm this intuitive physical picture by
numerical calculations.

At finite temperatures some care is required in postpro-
cessing the raw spectral data as obtained from the NRG
run. The δ peak is extracted from the spectral function by
removing the weight in a narrow interval of width 2 × 10−4�

around ω = ε, where ε can be independently determined very
accurately from the NRG flow diagrams. The results remain
essentially unchanged upon further narrowing of the interval.
The remaining continuous part of the spectral function is then
broadened and further characterized. This procedure allows
us to reliably partition the spectral function into discrete and
continuous components:

A(ω) = Aδ(ω) + Ac(ω). (8)

The corresponding spectral weights are defined as

Wi =
∫ �

0
Ai(ω)dω, (9)

with i = δ,c. It should be noted in passing that at finite
temperatures Wδ(T ) receives contributions not only from the
transition A but also from a discrete subset of transitions
between the states forming the continua Ce and Co with
energy difference exactly equal to ε (i.e., the transitions
De → Do in the presence of quasiparticles, but without the
quasiparticles interacting with the impurity). The temperature
dependence of both Wδ and Wc is an interaction effect: for
a noninteracting Hamiltonian, such as that corresponding to
a classical impurity with no internal dynamics, the spectral
function itself would not depend in any way on the temperature
(although the occupancies of the single-particle levels would
change with T ).

III. RESULTS: FIXED �

A. Overview and main characteristics

The calculations in this section are performed for fixed
model parameters (�/U = 0.1, εd = −U/2, U/� = 20);
only the temperature T is varied. The ground state is a spin
doublet, while the singlet excited state lies at the energy level

ε = 0.423� (10)

above it. Due to the particle-hole (p-h) symmetry the spectral
function is even, and we focus on its ω > 0 (particle addition)
part. At zero temperature, the weight of the δ peak at ω = ε is

Wδ(T = 0) = 0.0341. (11)

This indicates that the Shiba bound state wave function (as far
as it can be defined for an interacting system) has the majority
of its weight not in the impurity but in the host, which is
commonly the case for Shiba states.

The most important spectral characteristics are revealed
in the temperature-dependence plots shown in Fig. 2, while
an example of a typical finite-T spectral function is shown
in Fig. 3. Since the continuum part needs to be obtained by
broadening raw results in the form of a sum of δ peaks, its
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FIG. 2. (a) δ peak, continuum, and total spectral weight W in
the positive-frequency subgap part (0 < ω < �) of the impurity
spectral function A(ω,T ). (b) Positions of the δ peak, ωδ , and of
the maximum of the continuous part, ωpeak, as well as the mean value
of the continuous part ω̄c.

appearance depends on the choice of the kernel width. Here the
kernel is chosen sufficiently narrow to reduce overbroadening
effects at the price of small artifacts which are unphysical. Thus
the asymmetry of the continuum is a real feature; the secondary
peak is most likely an artifact of the method. For this reason
it is more meaningful to discuss the spectral moments rather
than the detailed shape of the spectrum.

The continuum weight Wc exhibits activated behavior for
low T , with the activation energy �:

Wc(T ) = 0.168 e−�/T . (12)

This confirms the expectation that the continuum background
is associated with the inelastic transitions that require a finite
thermal population of the quasiparticle states above the gap
which scatter on the impurity (diffuse transitions as shown
schematically in Fig. 1, arrow B).
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FIG. 3. Impurity spectral function A(ω,T ) at finite temperature
T = �/4. The hump at ω = 10� = U/2 is the Hubbard peak. The
inset shows a close-up of the subgap region. The position of the δ

peak ε is indicated using the dashed line and almost coincides with
the peak of the continuum part.

195125-4



SPECTRAL PROPERTIES OF SHIBA SUBGAP STATES AT . . . PHYSICAL REVIEW B 93, 195125 (2016)

For T � 0.2�, Wδ is a strictly decreasing function of
temperature, while Wc is increasing, and their sum Wδ + Wc

is approximately constant: the weight is gradually transferred
from the coherent discrete subgap state to diffuse states in-
volving itinerant quasiparticle states; this represents a thermal
decomposition of the Shiba state. We note that Wδ = Wc on the
scale T ≈ �/2. This is also the range where the total weight
Wδ + Wc reaches a maximum value. The continuum weight
Wc is increasing up to T ≈ �, where it reaches a value close
to Wδ(T = 0). In simple terms, with increasing temperature
almost all spectral weight is transferred from the δ peak to
the continuum by T ≈ �. For T > �, Wc itself becomes
a decreasing function, albeit only weakly: the decay of Wδ

at large T is much faster than that of Wc, and Wδ becomes
essentially zero by T ≈ 2�.

In Fig. 2(b) we consider the peak positions. The δ peak does
not move with temperature. This is expected since its position
ωδ = ε is given by the energy difference between two discrete
eigenstates of the Hamiltonian; thus it is a property of the
operator itself and does not involve any thermal effects. The
continuum part of the subgap spectrum is a peaked function
(see Fig. 3). The position of this peak ωpeak almost coincides
with the δ-peak position,

ωpeak ≈ ωδ = ε, (13)

since the main contribution comes from processes linking the
bottommost part of both continua. Interestingly, ωpeak is very
weakly temperature dependent even at T of order �. We
also plot the mean of the continuum part ω̄c, defined as the
normalized first moment of Ac(ω). The mean is larger than ε

and further increases with T , indicating that the continuum part
of the spectrum is skewed toward larger frequencies, as can also
be seen in Fig. 3. At low temperatures, the skewness exceeds 6
and is thus significant. The long tail is due to the asymmetry of
the transitions: the most populated thermally excited starting
states are those near the bottom of the even-parity continuum,
and the most likely end states are those at the bottom of
the odd-parity continuum starting at ε higher in energies.
At higher temperatures, T ∼ �, the distribution becomes
more symmetric around ω = ε with a clear dominant peak,
corresponding to the “thermally broadened” subgap resonance.

The width of the continuum part can be further charac-
terized through the standard deviation σc (see Fig. 4). It is a
strictly increasing function of T . At intermediate temperatures
T ≈ �/2 it reaches a value of order 0.1�; thus the background
is relatively broad. Another relevant quantity is the half width
at half maximum (HWHM) of the main peak in the continuum
part. Unfortunately, this quantity is very difficult to extract
reliably since it requires a delicate broadening procedure and
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0.2

c/

FIG. 4. Width (standard deviation) of the continuum part.
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FIG. 5. Temperature dependence of the continuum part of the
subgap spectrum Ac(ω,T ). The spectra are normalized by dividing
by the total weight of the continuum contribution Wc(T ), shown in
Fig. 2(a).

it strongly depends on the NRG calculation parameters; thus
the extracted values are quantitatively unreliable. We find that
the HWHM is only weakly increasing in the temperature range
T < �: it starts at values close to 0.01� in the low-temperature
limit and increases to ∼0.015� at T = �. The significant
difference between the standard deviation and the HWHM is
consistent with Ac(ω) being a long-tailed skewed distribution.

We now take a closer look at the redistribution of the
continuum weight at increasing temperature by plotting
Ac(ω,T )/Wc(T ), i.e., the continuum subgap spectrum renor-
malized by the total continuum weight Wc (see Fig. 5).
The spectrum always has a single dominant peak with the
maximum close to ε and with a long tail extending toward
high frequencies. As T increases, the weight redistributes from
the main peak to the wider subgap frequency range; thus the
system becomes increasingly incoherent.

B. � dependence

We now study how the results from the previous section
depend on the value of the hybridization �, in particular across
the singlet-doublet quantum phase transition where |S〉 and
|D〉 interchange their roles as the ground and the excited states,
respectively.

For low enough �, so that the impurity is in the Kondo
regime, the Shiba state energy ε follows the universal depen-
dence ε(TK/�), where TK = TK (�). For � → 0, the peak
is close to the gap edge; then it moves toward the chemical
potential for increasing � (see Fig. 6). For chosen U/� = 20,
the singlet-doublet (S-D) transition occurs at

�c = 0.155U. (14)

We first consider how the temperature dependencies of the
key spectral characteristics change for different values of �.
The δ-peak position ωδ = ε does not vary with temperature.
The continuum mean ωc, shown in Fig. 7, starts from ωc(T =
0) ≈ ε for � < �c, while for � � �c it starts from values close
to the gap edge (this peculiar low-temperature behavior will be
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FIG. 6. Subgap-state energy ε as a function of the hybridization
strength � for fixed U/� = 20. The inset shows the T = 0 spectral
weight of the subgap δ peak.

explained in Sec. III D). In the temperature range T � �, ωc

is a decreasing function of T for all cases where ε is close to
the gap edge (i.e., in deep doublet and in deep singlet phases),
while it is nonmonotonic or increasing for ε � � (i.e., in the
transition range with Shiba states deep in the gap; see Fig. 7).

The continuous-background weight Wc is strictly increas-
ing as a function of � at any fixed T up to

�∗ ≈ 0.225U (15)

(see Fig. 8). For � � �∗, the system is in the regime of
well-defined local moment (the Hartree-Fock solution spin
polarizes for � < U/π ≈ 0.3U ) with properties controlled by
the ratio �/TK , while for � � �∗ the charge fluctuations are
important and the impurity properties become nonuniversal.
At low T , the same exponential law Wc = be−�/T is found
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FIG. 7. Temperature dependence of the mean value of the contin-
uum part of the subgap spectrum ωc(T ) for a range of hybridization
strengths � in (a) doublet and (b) singlet regimes. The arrow indicates
the direction of increasing �.
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FIG. 8. (a) Temperature dependence of the continuum-part
weight Wc(T ) for a range of hybridization strengths �. (b) �

dependence for a range of fixed temperatures.

for all values of � � �∗, both in the singlet and in the doublet
regimes, with b(�) dependence, which can be read off from
Fig. 8(b). For � � �∗, however, we find some deviations
from pure exponential dependence. The maximum in Wc(T )
is always on the scale T ∼ �.

The δ-peak weight is monotonically decreasing as a
function of T for small � and has a local maximum for
intermediate � < �c (see Fig. 9). The temperature of the
maximum shifts to lower temperatures as � increases toward
�c, and for � > �c the weight again becomes a monotonically
decreasing function of T . This pronounced difference in the
low-T regime for � ≈ �c can serve as a tool to distinguish
between the doublet and singlet regimes at finite temperatures.
Indeed, in the zero-temperature limit and in the absence of
magnetic field (as assumed throughout this work) the subgap
weight changes discontinuously by a factor of 2 across the S-D
transition (see the inset in Fig. 6). At finite T , this discontinuity
is washed out (see the inset in Fig. 9). The upturn/downturn of
Wδ(T ) occurs at T ≈ |ε|, and this scale moves toward zero as
� → �c, as shown in the main panel of Fig. 6.

For � > �∗ the charge fluctuations lead to a decreasing
subgap spectral weight. The decreasing trend is also related to
the fact that the δ peak moves close to the gap edge in the limit
� � �∗. This is a known effect: subgap states merge with the
continuum in a continuous way by transferring spectral weight
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showing the same quantity at T = 0.

from the δ peak to the quasiparticle part, so that the weight of
the δ peak goes to zero as its position approaches ω = �.

C. εd dependence

The singlet-doublet transition can also be induced by
moving away from the p-h symmetric point by changing
the impurity level εd from the value −U/2. The spectral
function is then no longer an even function of frequency. The
temperature dependence of the weights is shown in Fig. 10
for two values on either side of the transition point. The
temperature variation of the total subgap spectral weight is
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FIG. 10. Temperature dependence of the subgap spectral weight
away from the particle-hole symmetric point. We plot separately the
negative frequency part (solid lines) and the positive part (dashed
lines), further separated into δ-peak and continuum contributions.
Here δ = εd + U/2 is a parameter which measures the departure
from the particle-hole symmetric point. We plot two cases close to
the singlet-doublet transition point: (a) doublet ground state (ε =
0.062�) and (b) singlet ground state (ε = 0.12�). Note the change
of the dominant peak from the negative to positive side across the
phase transition.
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FIG. 11. Subgap spectrum for strong hybridization � = 0.3U .
The inset shows the temperature dependence of the weight and
position of the secondary peak which appears just below the gap
edge.

significant in this regime due to the low excitation energy
ε and because the two subgap states correspond to different
expectation values of the impurity occupancy [33,34]; hence
〈n〉(T ) has activated behavior with the activation energy ε. In
regard to the transfer of spectral weight from the δ peaks to the
continuous background, we find results similar to those in the
p-h symmetric case, with exp(−�/T ) behavior and crossing
of the curves at T ≈ �/2.

For even larger δ = εd + U/2 ≈ 0.45U , well in the valence
fluctuation regime, we observe anomalies in the spectral means
at low temperatures similar to those for large �.

D. Anomalies for large �

Several anomalies are observed for large values of � and for
impurity level εd far away from the particle-hole symmetric
point. Their common origin is an additional subgap spectral
peak just below the gap edge (see Fig. 11). The weight of this
peak shows activated behavior at low temperatures:

w2(T ) = 0.018e−ε/T , (16)

where ε = 0.637� for the chosen value �/U = 0.3. This peak
dominates the continuum background for small T because its
activation energy ε is lower than that (�) of the continuous
background centered around the subgap peak. The dominance
of the additional peak in the low-T limit explains the strikingly
peculiar low-T behavior of ωc(T ) in Fig. 7. Extensive testing
has been performed to see if this feature could be merely a
numerical artifact of the NRG method. Varying 
, the Wilson
chain length, the discretization scheme, the algorithm for com-
puting the spectral function (naive Lehmann-decomposition
approach, complete Fock space, full density matrix), and the
number of states kept in the truncation, it was found that this
feature persists. It is thus either a generic artifact of the method
for finite T and � that cannot be eliminated by any parameter
choice or a real spectral feature of the Anderson impurity
model with superconducting baths. Presently, there is no other
theoretical method to reliably confirm the presence of this
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FIG. 12. (a) Weight and (b) position of the weakly bound
additional resonance just below the gap edge.

peak. However, the spectral weight appears sufficiently large
that it could be detected experimentally, despite its vicinity to
the gap edge.

It should be emphasized that there are no discrete subgap
multiparticle states with the energy corresponding to this peak.
Instead, its origin is associated with quasiparticle scattering on
the thermally excited doublet subgap state |D〉 (for large � and
far away from the particle-hole symmetric point, the ground
state is |S〉), generating new bound states of Bogoliubov
quasiparticles.

Figure 12 shows the dependence of the weight and position
of the additional peak. The threshold for the existence of the
peak is related to �∗; thus the peak is intimately related to
entering the charge-fluctuation regime. Close to the threshold,
its T = 0 position is at the gap edge, while for larger � it starts
at a finite binding energy below the edge.

IV. RESULTS: BCS �(T )

We now consider a realistic case where the gap � is
temperature dependent and tends to zero as the critical temper-
ature Tc is approached. We use a simplified phenomenological
expression

�BCS(T ) ≈ δscTc tanh

[
π

δsc

√
a

δC

CN

(
Tc

T
− 1

)]
, (17)

with δsc = 1.76,a = 2/3,δC/CN = 1.43, which is a good
approximation for the true BCS temperature dependence with
correct T → 0 and T → Tc asymptotics.

We consider the case where the system is in the dou-
blet regime at T = 0. The temperature dependence of key
quantities is shown in Fig. 13. The reduction of � with
increasing T drives the system toward the singlet regime.
The doublet-singlet transition occurs, however, just before
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FIG. 13. Temperature dependence of the quantities characteriz-
ing the subgap spectral function in the case of � = �BCS(T ). The
temperature-driven doublet-singlet phase transition is indicated by
the arrow. Model parameters are �/U = 0.1 and U/� = 20.

the critical point (indicated by the arrow in the figure). The
variation of the weights is quite similar to that in the fixed-�
calculation [compare Figs. 2(a) and 13(b)].

V. DISCUSSION

Based on general considerations of an interacting impurity
system and confirmed by numerical calculations, Shiba states
at finite temperature lose spectral weight to a continuous
subgap background centered at the same position. This
immediately leads to a question of principle about the proper
definition of the intrinsic lifetime of a subgap state. A discrete
excited many-particle state isolated from the continuum could
be expected to not decay at all. This is clearly the case in
the absence of quasiparticles. In an open system at finite
temperature, i.e., in contact with a heat and particle reservoir,
a quasiparticle in the superconductor can be generated through
a thermal fluctuation and can interact with the impurity spin,
giving rise to a continuum background. The excited subgap
many-particle state can release its excitation energy to the
incident quasiparticle and decay to the many-particle ground
state, resulting in a finite lifetime.

The model system studied here is admittedly simplistic.
In realistic systems, in particular when there are tunneling
pathways to a normal metal (such as a normal-state tip of
a scanning tunneling microscope), the δ peak will, strictly
speaking, no longer exist. Similarly, (direct or indirect)
coupling to the acoustic phonons of the host will broaden
the δ peak. If such couplings are small, however, it may
still be expected that the impurity spectral function could be
multimodal with nontrivial temperature dependence. For large
couplings, the details cannot be observed, and intrinsic lifetime
due to e-e interaction would be merely a correction to the total
width with the main contribution arising from other processes.

Let us now consider the example of Mn adatoms on
Pb(111) studied in Ref. [12]. Pb has �(T = 0) ≈ 1.35 meV.
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The experimental temperatures of T1 = 1.2 K and T2 = 4.8 K
correspond approximately to kBT /� of 0.07 and 0.33,
respectively. The most pronounced Shiba state occurs at
ε/�(T = 0) = 0.16. T1 corresponds to the low-T limit,
while at T2 the finite-temperature effects are expected to
be sizable. At T1 the measured linewidth was resolution
limited and had to be estimated indirectly through current
saturation plateaus, yielding � = �/0.8 ps < 1 μeV. At T2,
the width can be extracted from the peak width in the
weak-coupling regime, giving � ≈ �/6 ps ≈ 0.11 meV. Thus
�/�(T = 0) ≈ 0.1. In order to estimate what proportion of
this total relaxation rate could originate from the intrinsic e-e
processes, we have performed a calculation for the Anderson
impurity model with parameters tuned so that the Shiba state
energy corresponds to the dominant Shiba peak from the
experiment (�/U = 0.133,U/� = 20, giving ε/� ≈ 0.16).
The differential conductance has been computed at the same
level of approximation as in Ref. [12], but using the Green’s
function matrix obtained from the NRG calculation. The
result of such a calculation at the temperature matching T2 is
shown in Fig. 14. Peak widths were estimated by fitting Fano
resonance line shapes, which gives �intr ≈ 0.012�. While
this value is model and parameter dependent even if ε/�

and T/� are matched to those from the experiment, it is a
useful order-of-magnitude estimate. We thus find that for this
particular physical system, the contribution of the intrinsic
electron-electron processes as described in a single-orbital
Anderson impurity model is a minor contribution to the total
value.

This work opens up a number of interesting issues for
further study: Are there other systems where the phonon effects
are smaller and the intrinsic width could be significant? Are
the widths enhanced in multiorbital impurity models, perhaps

0 0.5 1 1.5 2
V/Δ

0

0.5

1

dI
/d

V
 (a

rb
. u

ni
ts

)

FIG. 14. Predicted differential conductance dI/dV based on
the finite-temperature impurity Green’s function from the NRG,
calculated in the limit of weak tip-impurity coupling.

due to additional relaxation processes involving multiple
Shiba states? How are the results modified if the BCS mean-
field Hamiltonian is replaced by a proper interacting model
with electron-electron attraction terms and the calculation is
performed fully self-consistently? Finally, a better theoretical
understanding of the additional thermally generated bound
states and their relation to the charge fluctuations is needed.
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