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We discuss the low-energy physics of the three-orbital Anderson impurity model with the Coulomb interaction
term of the Kanamori form which has orbital SO(3) and spin SU(2) symmetry and describes systems with partially
occupied t2g shells. We focus on the case with two electrons in the impurity that is relevant to Hund’s metals. Using
the Schrieffer-Wolff transformation we derive an effective Kondo model with couplings between the bulk and
impurity electrons expressed in terms of spin, orbital, and orbital quadrupole operators. The bare spin-spin Kondo
interaction is much smaller than the orbit-orbit and spin-orbital couplings or is even ferromagnetic. Furthermore,
the perturbative scaling equations indicate faster renormalization of the couplings related to orbital degrees of
freedom compared to spin degrees of freedom. Both mechanisms lead to a slow screening of the local spin moment.
The model thus behaves similarly to the related quantum impurity problem with a larger SU(3) orbital symmetry
(Dworin-Narath interaction) where this was first observed. We find that the two problems actually describe the
same low-energy physics since the SU(3) symmetry is dynamically established through the renormalization of the
splittings between the orbital and quadrupole coupling constants to zero. The perturbative renormalization group
results are corroborated with the numerical-renormalization group (NRG) calculations. The dependence of spin
Kondo temperatures and orbital Kondo temperatures as a function of interaction parameters, the hybridization,
and the impurity occupancy is calculated and discussed.
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I. INTRODUCTION

The theoretical work of recent years has led to a con-
siderably better understanding of the origin of electronic
correlations in materials with wide bands and relatively weak
Coulomb interactions, such as iron-based superconductors
and ruthenates. Based on the dynamical mean-field theory
calculations (DMFT) [1] it has been realized that a small
multiplet splitting coming from the Hund’s rule part of the
Coulomb interaction (J � U < W , with W the bandwidth,
U Hubbard interaction) has drastic effects at low-energy
scales [2–6]. This has important consequences for the physics
of these materials that are hence being referred to as the Hund’s
metals [6–9].

Impurity models play a major role in the DMFT studies
since the problem of the bulk is mapped to a problem of a
quantum impurity embedded in a self-consistently determined
bath. It is interesting to note that whereas in the single-orbital
setting the relevant impurity problem was well explored [10]
prior to the development of the DMFT, this is not the case
for multiorbital systems where the DMFT calculations pre-
ceded [2–6] the detailed investigation of the impurity models,
upon which those calculations are based. The discovery of the
strong influence of the Hund’s rule coupling within the DMFT
has encouraged studies of multiorbital effects also for adatoms
on metal surfaces. [11,12]

In this paper we study the three-orbital impurity problem
with Kanamori interaction,

Himp = 1

2
(U − 3J )Nd (Nd − 1) − 2JS2 − J

2
L2, (1)

relevant, for instance, to the DMFT description of a transition-
metal oxide with partially occupied t2g shells. In three-orbital
systems, the physics of Hund’s metals occurs at occupancy
Nd = 2 [13]. L,S are the orbital moment and spin operators,

respectively. The Hamiltonian in Eq. (1) has a SU(2) spin
and SO(3) orbital symmetry. The low-energy properties of the
model defined by Eq. (1) have not been studied so far.

The effects of the Hund’s rule coupling were explored
for several simpler (mostly two-orbital) models [14–22]. The
common conclusion of these works is that the Hund’s rule
coupling suppresses the Kondo temperature through reduced
exchange coupling of the low-lying impurity spin degrees of
freedom with conduction electrons.

More recently, a Dworin-Narath (DN) impurity model [23]
was studied [24–26]. The DN model is described in terms of
the simplified interaction Hamiltonian,

Himp = 1

2
(U − 3J )Nd (Nd − 1) − 2JS2, (2)

which is similar to Eq. (1), but without the orbital part of
the Hund’s interaction, (J/2)L2. The DN model has a higher
SU(3) orbital symmetry and different fixed points. This work
has led to important qualitative insights into the physics
of Hund’s metal. Namely, Refs. [24,25] derived a Kondo
Hamiltonian with a SU(M) orbital and SU(N ) spin symmetry
and argued that the key property is that the spin-spin Kondo
coupling is ferromagnetic (or small) and that a two-stage
screening of spin and orbital degrees of freedom occurs
(see also an earlier pioneering study [27]). In Ref. [25] a
renormalization group (RG) analysis stressed the importance
of different spin and orbital degeneracy. These findings were
corroborated by the numerical-renormalization-group (NRG)
study in Ref. [26].

Given the deep implications of these results it is important
to investigate the problem for the more realistic interaction
term that is actually used in the DMFT calculations. In
this paper we investigate the low-energy physics of the
Anderson impurity model (AIM) with Kanamori interaction
at occupancy close to Nd = 2, which is relevant to Hund’s
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metals. We derive the corresponding Kondo Hamiltonian using
the Schrieffer-Wolff transformation. The distinction between
the Kanamori and the Dworin-Narath Hamiltonian is found to
become asymptotically irrelevant: At low energies, the orbital
SO(3) symmetry is dynamically enlarged to the larger SU(3)
symmetry. Consequently, the qualitative picture of the two-
stage screening applies also for the Kanamori Hamiltonian.

We also performed the NRG simulations that confirm these
weak-coupling RG findings. We calculated the dependence of
spin and orbital Kondo temperatures for a range of parameters
and electron occupancies. Except at very low values of the
Hund’s rule coupling strength, the spin Kondo temperature is
significantly smaller (an order of magnitude or more). The
smaller bare value of the spin-Kondo coupling as well as its
slower running both contribute to such behavior.

The paper is structured as follows. In Sec. II we start with the
description of the model. In Sec. III we present the Schrieffer-
Wolff transformation, the resulting Kondo Hamiltonian, and
the Kondo couplings. In Sec. III C we discuss the RG flow
using the poor man’s scaling approach. In Sec. IV we give
the NRG results. In Sec. V we conclude with a discussion
of the implications of our results and with prospects for
future work. In Appendixes A and B we give technical details
on the derivation of the Kondo Hamiltonian and RG flow,
respectively. In Appendix C we compare the behavior of the
Dworin-Narath and Kanamori models.

II. IMPURITY MODEL

The impurity model of interest to this paper reads

Hbath =
∑
k,m,σ

εkc
†
kmσ ckmσ , (3)

Hhyb =
∑
k,m,σ

Vkc
†
kmσ dmσ + H.c.

= V
∑
m,σ

c†mσ dmσ + H.c., (4)

Himp = −2JS2 − α
J

2
L2

+U − 3J

2
Nd (Nd − 1) + ε0Nd, (5)

with

Nd =
∑
m,σ

d†
mσdmσ ,

S =
∑
m

d†
mσ

(
1

2
σ σσ ′

)
dmσ ′ ,

L =
∑

σ

d†
mσLmm′dm′σ .

(6)

The operators c
(†)
mσ and d

(†)
mσ annihilate (create) bath and

impurity electrons with spin σ = ±1/2 in orbital m; the orbital
degeneracy is denoted as M . The noninteracting conduction
electrons (Hbath) have energy εk , which corresponds to a
flat density of states ρ0 = 1/2D0 with half-bandwidth D0.
In the hybridization function (Hhyb) we use the notation∑

k Vkckmσ = V cmσ . The hybridization strength is defined as
� = πρ0V

2.

The interaction of the electrons on the impurity is described
by the term Himp where we introduced the parameter α that
tunes the impurity interaction between the Dworin-Narath
(α = 0) and the Kanamori (α = 1) case in a continuous way.
We will refer to the impurity model above as the Anderson
impurity model (AIM) to distinguish it from the Kondo model
defined in the following. Nd is the total impurity charge opera-
tor, S is the total impurity spin operator (σ are Pauli matrices),
and L is the total impurity orbital angular moment (L are
spin-1 matrices for M = 3). The spin and orbital momentum
operators obey the Lie algebra commutation relations and are
normalized such that Tr(XαXβ) = 2δα,β,X ∈ {L,S}.

In the following section we derive an effective Kondo
Hamiltonian for the simplest realistic model that captures
the Hund’s physics: the three orbital (M = 3) AIM with two
electrons or holes occupying the impurity such that the ground
state orbital moment and spin are L = 1, S = 1.

We set units such that D0 = 1, kB = 1, gμB = 1.

III. KONDO HAMILTONIAN AND RG ANALYSIS

A. Schrieffer-Wolff transformation

To investigate the low-energy behavior of coupled bath and
impurity electrons we derive an effective Kondo Hamiltonian
in which the charge fluctuations on the impurity are sup-
pressed. This is achieved using the canonical Schrieffer-Wolff
transformation [28]. The interaction term that is induced by
virtual fluctuations from the ground-state impurity multiplet
into the high-energy manifolds with n ± 1 electrons reads

HK = −PnHhyb

(∑
a

P a
n+1


Ea
n+1

+
∑

b

P b
n−1


Eb
n−1

)
HhybPn. (7)

Projector operators Pn project onto the atomic ground state
multiplet with valence n. Projectors P a

n±1 project onto the
high energy multiplets having energy Ea

n±1 (indices a,b denote
different invariant subspaces with respect to Himp) and the
virtual excitation energies are 
Ea

n±1 = Ea
n±1 − En where En

is the ground state energy; see Table I.
For the case of the Kanamori Hamiltonian, Eq. (7) can be

rewritten (see Appendix A for the derivation) in the following
“Kondo-Kanamori” form:

HK = JpNf + JsS · s + JlL · l + JqQ · q

+ Jls(L ⊗ S) · (l ⊗ s) + Jqs(Q ⊗ S) · (q ⊗ s). (8)

Nf is the bulk electron charge operator at the position of
the impurity, and S,L,Q (s,l,q) are total impurity (bath) spin,
orbit, and orbital quadrupole operators, respectively. The five

TABLE I. Excitation energies. The parameter b is defined in
Eq. (12).

Index Nd L S 
E


E1 1 1 1/2 b(U − (4 − α)J )

Ea

3 3 0 3/2 (1 − b)(U − (4 − α)J )

Eb

3 3 2 1/2 (1 − b)U + J (b(4 − α) + 2(1 − α))

Ec

3 3 1 1/2 (1 − b)U + J (b(4 − α) + 2)
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(symmetric and traceless) quadrupole operators are second-
order orbital tensor operators defined as

Qbc
i,j = 1

2

(
Lb

i,mLc
m,j + Lc

i,mLb
m,j

) − 2

3
δb,cδi,j , (9)

Tr(QαQβ) = 2δα,β . (10)

The Kondo Hamiltonian contains besides spin-spin, orbital-
orbital, and quadrupole-quadrupole interaction also the mixed
spin-orbital and spin-quadrupole products (L ⊗ S,Q ⊗ S,
respectively). Equation (8) can be viewed as a multipole
expansion of the exchange interaction for spin and orbital
degrees of freedom; the highest orders (dipole for spin,
quadrupole for orbital momentum) are related to the degrees
of freedom carried by the particles (σ = ±1/2 for spin,
m = −1,0,1 for orbital momentum).

For the Dworin-Narath Hamiltonian, the corresponding
Kondo form reads

H DN
K = JpNf + JsS · s + JtT · t

+ Jts(T ⊗ S) · (t ⊗ s). (11)

In this expression, s is the total bath spin operator and tα =∑
mm′σ c

†
mσ τα

mm′cm′σ , τα are the Gell-Mann matrices. S and T
are the generators of spin-1 representation of SU(2) and the
fundamental representation of SU(3), respectively.

The total set of eight generators {L,Q} is, in fact, equivalent
to the set of SU(3) generators {T }: Both sets constitute a basis
for the traceless Hermitian 3 × 3 matrices. Reducing the SU(3)
orbital symmetry to SO(3) symmetry leads to a splitting of
the orbit-orbit and orbit-quadrupole coupling constants, i.e.,
Jt → Jl,Jq and Jts → Jls,Jqs . One of the goals of this work
is to study the consequences of this splitting.

B. Kondo coupling constants

We calculate the coupling constants for the ground-state
multiplet with two electrons occupying the impurity (Nd = 2)
that has angular momenta L = 1,S = 1. In the zero bandwidth
limit, V → 0, the impurity energy level which determines the
impurity occupancy reads

ε0 = 3 + 2α

2
J − (1 + b)[U − J (4 − α)]. (12)

It is measured from the Fermi level. The parameter b ∈ [0,1]
controls the occupancy of the impurity before the projection to
the Nd = 2 subspace and determines the potential scattering
term of the Kondo Hamiltonian. The term is written so
that when b → 0 and b → 1 the atomic Nd = 2 ground
state becomes degenerate with the atomic lowest states with
occupancies Nd = 1 and Nd = 3, respectively. The excitation
energies 
E1,3 to states with impurity occupancy Nd ± 1 =
1,3 are presented in Table I. Superscripts a,b,c denote the
three multiplets with charge Nd = 3 having different values of
spin and orbital moment.

We note in passing that under the particle-hole transfor-
mation [29] not only the potential scattering term but also the
spin-orbital coupling and the quadrupole-quadrupole coupling
terms of the Hamiltonian in Eq. (8) are odd. As a result, the
twofold hypercharge degeneracy discussed in Ref. [30] does
not apply even in the absence of potential scattering.

Next we calculate the Kondo coupling constants by com-
paring the matrix elements of Hamiltonians in Eqs. (7) and (8):

Jp = V 2

18

(
6


E1
− 4


Ea
3

− 5


Eb
3

− 3


Ec
3

)
, (13)

Js = V 2

18

(
6


E1
− 2


Ea
3

+ 5


Eb
3

+ 3


Ec
3

)
, (14)

Jl = V 2

12

(
6


E1
+ 8


Ea
3

− 5


Eb
3

+ 3


Ec
3

)
, (15)

Jq = V 2

12

(
6


E1
+ 8


Ea
3

+ 1


Eb
3

− 3


Ec
3

)
, (16)

Jls = V 2

6

(
6


E1
+ 4


Ea
3

+ 5


Eb
3

− 3


Ec
3

)
, (17)

Jqs = V 2

6

(
6


E1
+ 4


Ea
3

− 1


Eb
3

+ 3


Ec
3

)
. (18)

These bare Kondo couplings are presented in Fig. 1(a) for
different values of the parameter b. The spin-spin coupling
Js is substantially smaller than others for most values of
b and changes sign on approaching b = 1 that corresponds
to the regime of valence fluctuations between Nd = 2 and
Nd = 3 (at the degeneracy point between Nd = 2 and Nd = 3,
the atomic average occupancy is 30/13 ≈ 2.3, while at the
degeneracy point between Nd = 2 and Nd = 1, the atomic
average occupancy is 8/5 = 1.6). All couplings diverge on
approaching the end points b = 0 and b = 1 where the cost
for the charge excitations vanishes. The Kondo model and
the derived couplings for the Nd = 2, L = 1, S = 1 atomic
ground-state configuration cease to be valid there.

The results are qualitatively similar to those found for the
Dworin-Narath model in Refs. [24,25] with the distinction
that for the Kanamori Hamiltonian the orbital and quadrupole
couplings are split:

Jq − Jl = 
J/2,

Jqs − Jls = −
J,

with


J = V 2

(
1


Ec
3

− 1


Eb
3

)
= 2JαV 2


Eb
3
Ec

3

.

This results from the different energies of the L = 1 and
L = 2 three-electron spin-doublet multiplets, caused by the
−α(J/2)L2 term in the Hamiltonian. For the Kanamori model
with α = 1 the splitting is largest when the Hund’s coupling
reaches

J = (1 − b)U√
9b2 + 6b

. (19)

For two electrons at the impurity (b ≈ 1/2) this occurs for
J = 0.22U . Figure 1(b) shows how the splitting develops
as the Hund’s coupling J is increased from zero, while
keeping the parameter that controls the charge fluctuations,
Ueff = U − 3J , constant. In other words, as J is varied,
the Hubbard repulsion U is adjusted so that the effective
impurity repulsion Ueff = E(3) + E(1) − 2E(2) = U − 3J is
kept fixed; here E(N ) denotes the energy of the lowest
multiplet with occupancy N . The splittings of Kondo couplings
are initially linear in J , but then slowly fall off as 1/J . For
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FIG. 1. (a) Bare Kondo exchange coupling constants of the effective Kondo-Kanamori model as a function of the impurity level parameter
b. Model parameters are U = 3.2,J = 0.4. The inset shows the relative size of the splittings through ratios (Jl − Jq )/(Jl + Jq ) and (Jls −
Jqs)/(Jls + Jqs). (b) Bare Kondo couplings as a function of Hund’s coupling J for constant Ueff = U − 3J = 2, b = 0.5.

any J , the hierarchy of coupling constants is Js < Jl � Jq <

Jqs � Jls .
For α = 0, the n = 3 excited states with spin S = 1/2

and orbital moment L = 1,L = 2 become degenerate and
the following relation holds 
Eb

3 = 
Ec
3 = 
Ea

3 + 6J =

E3 + 6J , and we find

Jp = V 2

9

(
3


E1
− 2


E3
− 4


E3 + 6J

)
, (20)

Js = V 2

9

(
3


E1
− 1


E3
+ 4


E3 + 6J

)
, (21)

Jl = Jq = V 2

6

(
3


E1
+ 4


E3
− 1


E3 + 6J

)
, (22)

Jls = Jqs = V 2

3

(
3


E1
+ 2


E3
+ 1


E3 + 6J

)
. (23)

The results of Ref. [25] are recovered if one omits terms
proportional to (
E3 + 6J )−1 that come from the transitions
to n = 3,S = 1/2 states neglected there and rescales the
coupling constants by a factor of 2 due to the different
definition of the Hamiltonian.

C. Poor man’s scaling analysis

We now discuss the low-energy physics of the derived
Kondo-Kanamori Hamiltonian within the weak-coupling RG
approach [31]. The scaling functions βi = dJi/d ln(D) de-
scribe the renormalization of the coupling constants as the
half-bandwidth D is progressively reduced. For S = 1, L = 1
impurity configuration, corresponding to the ground-state
multiplet for two electrons the scaling functions to the lowest
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FIG. 2. Scaling of the Kondo coupling constants (top) and β divided by the spin scaling function βs (bottom) for different initial couplings.
The horizonal scale is such that the origin corresponds to T = TK , where the coupling constants diverge. In (a) and (b) the mixed bare
couplings are suppressed, Jls = Jqs = Js/100, where Js = Jl = Jq = 1. In the inset in (a) we plot ratios Jl/Js (solid line) and Jls/Js (dotted
line). In (c) and (d) the quadrupole couplings are suppressed, Jq,qs = Js/100 and Js = Jl = Jls = 1. In (e) and (f) we use the bare couplings
that correspond to the Anderson impurity model with parameters U = 3.2,J = 0.4,� = 1. Inset in (f) shows ratio between the orbital and
quadrupole couplings. Solid and dashed lines correspond to ratios Jl/Jq and Jls/Jqs , respectively.
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FIG. 3. The NRG results for the effective moments χS,LT (main
panel) and susceptibility χS,L (inset) as a function of temperature
for Dworin-Narath, Kanamori, and Kondo-Kanamori models. U =
3.2,J = 0.4,� = 0.1.

order read

βp = 0, (24)

βs = −1

9

(
3Jls

2 + 5Jqs
2 + 9Js

2
)
, (25)

βl = −1

4

(
Jl

2 + 2Jls
2 + 5

(
Jq

2 + 2Jqs
2
))

, (26)

βq = −3

2
(JlJq + 2JlsJqs), (27)

βls = −1

6
(3JlJls + 5JlsJqs + 12JlsJs + 15JqJqs), (28)

βqs = − 1

12
(Jqs(18Jl + 7Jqs + 24Js)

+ 3Jls
2 + 18JlsJq). (29)

For a particle-hole symmetric band (as is the case for the flat
density of states, ρ0 = 1/2, used here) the potential scattering
operator is marginal, βp = 0.

The symmetry of the Hamiltonian is reflected in the scaling
equations. For instance, for vanishing Hund’s orbital coupling
in the AIM, the initial orbital and quadrupole coupling
constants in Eq. (13) are equal Jq = Jl and Jqs = Jls . For such
SU(3) orbitally symmetric choice of bare coupling constants,
the respective scaling functions coincide: βq = βl,βqs = βls

and hence Jq = Jl and Jqs = Jls also after RG scaling.
It is interesting to omit the cross-terms by setting Jls =

Jqs = 0, which is preserved also after RG flow. Hence, the
spin and orbit coupling constants undergo a separate scaling
in this case. From the ratio of the two scaling functions
βl/βs = (3/2)J 2

l /J 2
s one sees that besides the larger bare

value of Jl additional factor 3/2 (the ratio of the orbital and
spin degeneracy) helps the faster renormalization of orbital
couplings. This behavior, associated with the larger SU(3)
symmetry holds in the case of Jq = Jl .

We numerically solved the scaling equations for three
characteristic cases; see Fig. 2. The top panels show the
Kondo couplings and the bottom panels the scaling functions
β divided by the spin scaling function βs .

In the first case, see the left-most panels, Figs. 2(a) and 2(b),
we set the initial values to unity Js = Jl = Jq = 1, but we
suppressed the cross-terms and set Jls = Jqs = 1/100. The
orbital coupling renormalizes to strong coupling faster than
the orbital coupling. The mixed-spin orbital coupling Jls

also increases faster, and exceeds the values of Js at low
temperatures.

The second case, shown in the middle panels, Figs. 2(c)
and 2(d), demonstrates the effects of the splitting between
the orbit and quadrupole terms. We set the initial values
to unity Js = Jl = Jls = 1 for all but the quadrupole and
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FIG. 4. NRG finite size spectra for the DN and Kanamori interaction. Parameters are U = 3.2, J = 0.4, Nd = 2.
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J for different values of hybridization �. (c) Spin and orbit Kondo
temperatures plotted versus logarithm of the Hund’s coupling J . (d)
Spin and orbit Kondo temperatures as a function of �−1 for two values
of J = 0,J = 0.2.

spin-quadrupole coupling constants that we suppressed: Jq =
Jl/100,Jqs = Jls/100. When the quadrupole terms are small
they can be neglected in the scaling equations [Eqs. (25)–(29)].
In this case initially the scaling of the spin coupling is faster
than the scaling of the orbit coupling, because the normally
large contribution of the quadrupole terms Jq,qs to βl is not
present. Only when Jq,qs become comparable to Jl,ls , the
renormalization of the orbital coupling becomes faster than the
renormalization of the spin coupling. It is important to note that
the splitting between the orbit and quadrupole and spin-orbit
and spin-quadrupole terms disappears at low energies.

The case of realistic set of initial coupling constants
corresponding to the Anderson model (with parameters U =
3.2,J = 0.4,� = 1) is displayed in Figs. 2(e) and 2(f). One
sees that the splitting between the orbital and quadrupole
terms, which is weak already initially, completely disappears
on approaching the low energies [best seen in inset to
Fig. 2(e) that displays the ratio of the two]. Thus the multiplet
splitting due to orbital interaction in the Anderson model
becomes insignificant at low energies. The SU(3) and SO(3)
symmetric models describe the same low-energy physics.
Similar dynamical symmetry generation (or restoration) has
been observed in a number of other quantum impurity models
as well [32–36].

IV. NUMERICAL RENORMALIZATION GROUP RESULTS

Using the NRG technique [37] we solve the Kanamori,
Dworin-Narath (DN), and the Kondo impurity model. The
NRG results validate the qualitative insights from the poor
man’s scaling approach discussed above. The two-stage
screening behavior with the spin being screened at a tempera-
ture that is significantly lower than that for the orbital moment
occurs in all three models.

We have implemented an NRG code with conserved
quantum numbers (Q,S,L), corresponding to total charge,
total spin and total orbital angular momentum, i.e., using
the U(1)⊗SU(2)⊗SO(3) symmetry. This allows one to per-
form three-orbital calculations even with modest computation
resources.

A. Comparison between Dworin-Narath, Kanamori, and
Kondo-Kanamori results

In Fig. 3 we present the temperature dependence of the
effective spin and orbital moments, χST and χLT , where
χL,S are the impurity orbital and spin susceptibilities. The
Kanamori results are compared to those for the Kondo
model with exchange couplings set by Eqs. (24)–(29) and
those for the more symmetric Dworin-Narath model. At high
temperatures, the results for different models significantly
differ due to different high-energy physics. Nevertheless,
at lower temperatures the different models behave alike.
In particular, the Kondo-Kanamori curves are close to the
Kanamori ones (the differences become even smaller if the
ratio of the interaction to the hybridization is diminished)
which validates our analytical approach. The Dworin-Narath
model behaves qualitatively the same, the main distinction
being noticeably higher screening temperature of the orbital
moments.

In the inset to Fig. 3 we present the spin and orbital suscepti-
bilities. The former is scaled by 1/4 for easier comparison. The
spin susceptibility is much larger than the orbital susceptibility
and the latter saturates at higher temperatures. This again
shows faster screening of the orbital degrees of freedom. The
orbital susceptibility has a weak maximum before saturating
to the low-temperature value. Similar behavior was found in
earlier work [24].

To confirm the asymptotic equivalence of the models, we
present in Fig. 4 the finite size spectra calculated with NRG for
the DN and the Kanamori impurity models as a function of the
NRG step. The two spectra are the same at low energies, which
shows that the two models have exactly the same low-energy
Fermi-liquid fixed point with excitation spectrum parametrized
by the quasiparticle phase shift which is determined by the
Friedel sum rule for fixed occupancy Nd = 2.

B. Kanamori results at integer occupancy Nd = 2

We now discuss the Kanamori model in more detail. It is
convenient to define the spin and orbital Kondo temperatures as
the scale at which the respective effective moment diminishes
below a constant. We take the constant to be 0.07 for spin and
0.07l(l + 1)/s(s + 1) for the orbital effective moment [10]. l,s
are the orbital moment and the spin of electrons, i.e., l = 1,
s = 1/2, hence l(l + 1)/s(s + 1) = 8/3. It is of interest to
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FIG. 6. Kanamori model. (a)–(f) Spin and orbit Kondo temperatures as a function of the impurity occupancy Nd for different values of the
Hund’s coupling J at fixed Ueff = 2. (g) Spin and orbit Kondo temperatures in a larger region of impurity filling for zero and nonzero Hund’s
coupling. At J = 0 the spin and orbit Kondo temperature are equal. � = 0.1. (h) Ratio between the spin and orbit Kondo temperatures. The
arrows indicate the direction of increasing J . The inset shows the inverse ratios.

know how the spin T
spin
K and orbital T orb

K Kondo temperatures
vary with the parameters of the Hamiltonian. We first discuss
the results at an integer occupancy Nd = 2.

In Figs. 5(a)–5(c) we plot T spin
K and T orb

K as a function of the
Hund’s rule coupling J for several hybridization strengths �.
When J is smaller than the Kondo scale of the J = 0 model,
TK(J = 0) = T 0

K, the moments are screened before the Hund’s
coupling has effect. In this regime symmetry of the model
becomes SU(M × N), hence only a single Kondo scale exists
and T

spin
K = T orb

K . The Kondo temperature dependence on J

is initially slow, but becomes faster when J becomes larger
than T 0

K as seen from Fig. 5(c). In addition, close to the J ∼
T 0

K point, T
spin
K becomes smaller than T orb

K . Unlike T
spin
K that

decreases monotonously with J , T orb
K has a weak maximum

at J above TK (J = 0), which arises as a consequence of an
interplay between the orbital, quadrupole, and spin-orbital,
spin-quadrupole interactions. This can be understood from
the behavior of the coupling constants at small J . Namely,
upon expanding the Kondo couplings to first order in J one
sees that the orbital-orbital and quadrupole-quadrupole Kondo
interactions increase with J , e.g., Jl = J 0

l + αJ , while the
other coupling constants decrease, e.g., Jls = J 0

ls − βJ , where
α,β are positive constants.

It is interesting to look at the spin and orbit Kondo
temperatures also as a function of hybridization. In Fig. 5(d)
we present the logarithms of T

spin
K and T orb

K as a function of
�−1 for zero and nonzero value of Hund’s rule coupling. In the
first case, the spin and orbit Kondo scales are the same for all
�. Conversely, in the second case, the spin Kondo temperature
is below the orbit Kondo temperature for all �. The leading
exponential dependence on � is the same for both T

spin
K and

T orb
K , as seen from equal slopes of the lines. The slopes depend

on the repulsion and are −Ueff/c with (at Nd = 2) c ≈ 3 for
the zero-J case and c ≈ 4 for the finite-J case. The difference
is due to the increased degeneracy of multiplets in the J = 0
case.

C. Kanamori results away from integer filling

We now turn to the results away from integer filling.
In Figs. 6(a)–6(f) we display the Kondo temperatures for
several � and J , still keeping Ueff = 2 fixed, as a function
of the impurity occupancy Nd in an interval around 2. The
spin and orbital Kondo temperatures behave differently. T

spin
K

exhibit an overall diminishing trend as Nd is increased towards
half-filling (Nd = 3) with a shallow minimum at Nd = 2
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that becomes less pronounced for larger � where log T
spin
K

is roughly linear in Nd . Conversely, T orb
K increases when

occupancy is changed from Nd = 2 in both directions for all
values of �.

The different behavior of both Kondo temperatures on
approaching half-filling is due to the lowest states at Nd = 3
having large spin but vanishing orbital moment, L = 0,S =
3/2, thus the screening of the spin is strongly suppressed
because of its large size [14,21], while the orbital moment is
screened at a higher temperature. At half-filling, the notion of
orbital Kondo temperature becomes meaningless, as the orbital
moment is zero also in the limit of vanishing hybridization.
This distinction disappears for J = 0; see Fig. 6(g) where the
results for zero and nonzero J are shown in a broader range of
Nd . For J = 0, the spin and orbit Kondo temperatures are the
same.

On approaching small occupancies, Nd � 1, the Kondo
temperatures rapidly increase and no distinction is seen
between zero and nonzero J cases in Fig. 6(g). When there
is on average a single electron in the impurity the Hund’s
coupling has no effect.

In Fig. 6(h) the ratio between the spin and orbital Kondo
temperatures is shown. One sees that T orb

K /T
spin
K rapidly

increases as Nd is increased and at the occupancy Nd = 2
this ratio is about 10 and is further increasing as we approach
half-filling.

V. CONCLUSION

We investigated the low-energy behavior of the Kanamori
model in the RG and NRG approaches. We derived the
appropriate Kondo model that is described in terms of spin,
orbital, and quadrupole degrees of freedom. At the lowest
energies the splitting between the orbital and quadrupole
coupling constants becomes insignificant, therefore similar
behavior as for a Hamiltonian with a larger SU(3) [25]
symmetry can be expected. The NRG results confirm these
poor-man’s scaling findings. In particular, both models have
the same strong-coupling Fermi-liquid stable fixed point at
low energies and approach this fixed point in a similar way
(in the physically relevant parameter range). We calculated
the dependence of the spin and orbital Kondo temperatures on
interaction parameters, hybridization, and impurity occupancy.
The orbital Kondo temperature is higher, thus orbital moments
are quenched first as the temperature is lowered. This behavior
starts to occur as soon as the Hund’s rule coupling is increased
above the Kondo temperature of the problem without the
Hund’s rule coupling. The screening of the spin moments
occurs at a temperature that is about an order of magnitude
smaller [38]. The ratio of the orbital Kondo temperature
to the spin Kondo temperature becomes particularly large
as the impurity occupancy is increased towards half-filling.
Our results demonstrate that the NRG is capable of treating
problems with realistic three-orbital interactions. This method
could hence be used in the DMFT calculations, too. Another
interesting line of investigation is the analysis of the derived
Kondo impurity model for parameters that do not correspond
to the Anderson-type model. Our preliminary results reveal
a rich phase diagram with several distinct non-Fermi-liquid
phases.
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APPENDIX A: KONDO HAMILTONIAN DERIVATION

In this appendix we perform the Schrieffer-Wolff transfor-
mation to derive the Kondo Hamiltonian from the AIM with
either the Dworin-Narath or Kanamori interaction. The Kondo
Hamiltonian having SO(3) orbital and SU(2) spin symmetry
was earlier written in terms of unit tensor operators in Ref. [39].
The Kondo Hamiltonian having SU(M) orbital and SU(N) spin
symmetry was derived in Ref. [25].

The Schrieffer-Wolff transformation reads

HK = −PnHhyb

(∑
a

P a
n+1


Ea
n+1

+
∑

b

P b
n−1


Eb
n−1

)
HhybPn. (A1)

The projector operator Pn projects onto the atomic ground-
state multiplet with occupancy n. The projectors P a

n±1 project
onto the high-energy atomic multiplets having energy Ea

n±1
(indices a,b denote the different invariant subspaces with
respect to Himp as presented in the main text) and the virtual
excitation energies are 
Ea

n±1 = Ea
n±1 − En, En being the

ground-state energy.
We adopt the Einstein summation notation and for the sake

of clarity we at first disregard all the constants (e.g., V 2/
E).
The projection operators to atomic multiplets transform as an
identical representation under all symmetry transformations of
the problem, hence the multiplet splitting of the excited states
affects only the coupling constants (we write � = Hhyb):

∑
a

〈n|� P a
n+1


Ea
n+1

�|n〉 =
∑

a

1


Ea
n+1

〈n|��|n〉. (A2)

|n〉 = Pn|LS〉 is the ground state with valence n, orbital
moment L, and spin S. The virtual charge excitation process
conserves the impurity charge, thus Pnd

†
j d

†
i Pn = 0. The

nonzero terms in the Kondo Hamiltonian are of the form,

H ′
K = Pn��Pn = Pn(c†iσi

diσi
d
†
kσk

ckσk
+ H.c.)Pn, (A3)

Next we insert an identity,

c
†
iσi

diσi
d
†
kσk

ckσk
= (c†iσi

δi,lδσi ,σl
dlσl

)(d†
kσk

δk,j δσk,σj
cjσj

), (A4)

and use the following group-theoretical relations [40,41]:

δi,lδk,j = 1

m
δi,j δk,l + 1

a
(τ b)i,j (τ b)k,l, SU(m), (A5)

δi,lδk,j = δi,kδj,l + 2

a
(T b)i,j (T b)k,l, SO(m). (A6)

The generators τ,T live in the defining (fundamental) rep-
resentation of the SU(m), SO(m) symmetric Lie group,
respectively. The constant a depends on the normalization
of the generators Tr(T bT c) = aδb,c (typically a = 2). In the
SU(2) case τ are the Pauli matrices and in the SU(3) case τ

are the Gell-Mann matrices.
To obtain the Kondo Hamiltonian from the AIM with

the Dworin-Narath interaction in terms of spin and orbital
operators, we insert the identity (A5) into Eq. (A4) for the spin
and orbital degrees of freedom (since both have SU symmetry).
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The relation (A5) leads to a result in which the dummy indices
associated with the bulk operators ci,j are independent from
the indices associated with the impurity operators, and can be
summed over to yield spin/orbital momentum operators. The
Kondo Hamiltonian with the Dworin-Narath interaction reads

H DN
K = JpNf + JsS · s + JtT · t

+ Jts(T ⊗ S) · (t ⊗ s). (A7)

Bath operators are defined as

s =
∑
m

c†mσσ σσ ′cmσ ′ ,

t =
∑

σ

c†mστmm′cm′σ .
(A8)

τ ,σ are the Pauli and Gell-Mann matrices, respectively. S and
T are the generators of spin-1 representation of SU(2) and the
fundamental representation of SU(3).

On the other hand the relation (A6) does not decouple the
bulk/impurity dummy indices due to the term δi,kδj,l . However,
this problematic term can be, for the three-dimensional SO(3)
symmetric group, rewritten as

δi,lδk,j = 1

3
δi,j δk,l + 1

2
T c

i,j T
c
k,l + 1

2
Qde

i,jQ
de
k,l, (A9)

which does lead to the desired decoupling. Above we used the
orbital quadrupole operators defined as

Qbc
i,j = 1

2

(
T b

i,mT c
m,j + T c

i,mT b
m,j

) − 2

3
δb,cδi,j , (A10)

Tr(QαQβ) = 2δα,β, (A11)

which are symmetric and traceless. We derive the identity (A9)
by calculating

∑
b,c Qbc

ij Qbc
kl and using the identity (A6). By

inserting the identity (A9) for orbital and (A5) for spin degrees
of freedom into the Hamiltonian (A4), we express the Kondo
Kanamori Hamiltonian as

HK = JpNf + JsS · s + JlL · l + JqQ · q

+ Jls(L ⊗ S) · (l ⊗ s) + Jqs(Q ⊗ S) · (q ⊗ s). (A12)

S,L,Q (s,l,q) are total impurity (bath) spin, orbit, orbital-
quadrupole operators, respectively [42].

APPENDIX B: RG FLOW

In the second order of the perturbation theory we integrate
out the scattering events to the states close to the band edges,
±ε ∈ [D − δD,D]. The correction to the renormalized Kondo
interaction is


HK ≈ 1


E
HKPHK. (B1)

The projector P describes all the scattering events of elec-
trons from the impurity to the band edges. The prefactor
is 1/
E = ρ|δD|(E − D + εk)−1 ≈ ρ|δD|D−1. We assume
that the conduction band is wide. D is the half-bandwidth,
E is the energy measured relative to the ground state of the
conduction electron gas and can be neglected, and εk is the
energy of electrons near the Fermi surface and can also be
neglected relative to D.

In the following we present a convenient way for calculating
the second-order corrections to the renormalized Hamiltonian
using the completeness relations from the previous section.
We will illustrate the procedure on the case of the spin-spin
Kondo interaction term JS · σ for a single orbital model with
S = 1/2. First, we write the impurity operators in terms of the
fermionic operators,

Sα → d
†
i σ

α
ij dj , (B2)

with additional constraint d
†
↑d↑ + d

†
↓d↓ = 1. d

†
i ,di cre-

ates/annihilates an electron on the impurity with spin i ∈
{↑,↓}, and σα are the Pauli matrices. The bulk electron spin
operator is

σα → c
†
i σ

α
ij cj , (B3)

and c
†
i ,ci creates/annihilates an electron with spin i in the

bulk. The spin-spin operators may be expressed in terms
of Kronecker δ symbols using the following completeness
relation: ∑

α

(σα)i,j (σα)k,l = 2δi,lδk,j − δi,j δk,l . (B4)

[For other operators, such as orbital, quadrupole, and
mixed operators, one can derive similar expressions from
Eqs. (A5), (A6), and (A10).] After inserting the completeness
relation we obtain

J 2
∑
ijkl

(2δi,lδk,j − δi,j δk,l)d
†
i dj c

†
kclP

×
∑
mnop

(2δm,pδo,n − δm,nδo,p)d†
mdnc

†
ocp (B5)

= J 2
∑
ijkl

∑
mnop

Aijkl
mnopPd

†
i dj d

†
mdnc

†
kclc

†
ocp. (B6)

The projector P consists of two contributions:

P = δjm(δlo + δkp). (B7)

The first term δjm follows from the single-occupancy con-
straint of auxiliary fermions, while the second term δlo +
δkp describes the processes that involve scattering of elec-
trons/holes to the upper/lower band edge. In the expressions
one can use c

†
σkcσk = 0 for the electron states k in the upper

band edge that are assumed empty and c
†
σkcσk = 1 for the

electron states k at the lower band edge that are assumed filled.
Now we sum over the indices m,o to eliminate Kronecker

δ symbols that come from the projection operator. The
contribution of the electron scattering to the upper band edge
reads

J 2
∑
ijkl

∑
np

A
ijkl

jnlpd
†
i dnc

†
kcp. (B8)

Next we sum over the dummy indices j,l. The correction to
the Kondo exchange reads

J 2
∑
iknp

(−4δipδkn + 5δinδkp)d†
i dnc

†
kcp (B9)

= −2J 2S · σ + 3J 2
∑
iknp

δinδkpd
†
i dnc

†
kcp. (B10)
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FIG. 7. Spin and orbital Kondo temperatures as a function of Hund’s coupling J for different values of parameter α (α = 0 DN interaction,
α = 1 Kanamori interaction). Model parameters are Ueff = 2,Nd = 2.

This result has the same form as the initial exchange interaction
with an additional potential scattering term. A contribution
from the scattering to the lower band edge is obtained in
a similar fashion; the exchange term is the same, while the
potential scattering term has an opposite sign and therefore
cancels out that in Eq. (B9) since we have assumed a particle-
hole symmetric conduction band. We recover the standard β

function of the S = 1/2 Kondo model.
A similar approach can be used to tackle the multiorbital

problem. We reproduce the scaling equations of Ref. [17]
by applying the completeness relations for the fundamental
representation of the spin and orbital moment operators
(additionally one has to rescale the Jls by a factor of 2). In the
presence of the Hund’s coupling and two electrons occupying
the impurity, we have to take the S = 1,L = 1 representationw
for the impurity spin and orbital moment operators. To
calculate the scaling function an additional relation,

SiSj = 2

3
δij + i

2
εijkSk + Qs

ij , (B11)

has to be applied. εijk tensor is determined by the commutator
properties of the spin-1 operators [Si,Sj ] = iεijkSk and Qs

ij

are spin-quadrupole operators, which are absent from the
original Kondo Hamiltonian. Spin-quadrupole operators are
orthogonal to the spin operators hence they do not affect the
spin scaling equations.

The scaling functions for a flat band, a general number of
orbitals M occupied by two electrons, and N = 2 read

βs = M(Jls
2 − M(Jls

2 + 2Js
2)) − Jqs

2(M2 + M − 2)

2M2
,

(B12)

βl = 1

16

( − 4Jl
2(M − 2) − 3Jls

2(M − 2) − (M + 2)

×(
4Jq

2 + 8Jqs
2
))

, (B13)

βq = −1

8
M(4JlJq + 8JlsJqs), (B14)

βls = −Jls(M(Jl(M − 2) + 4Js) + Jqs(M2 − 4)) + JqJqsM(M + 2)

2M
, (B15)

βqs = −2JqsM(JlM + 4Js) + JlsM(Jls(M − 2) + 2JqM) + Jqs
2(M2 + 2M − 8)

4M
. (B16)

When α = 0,Jq = Jl,Jqs = Jls and results are the same as obtained in Ref. [25] for the model with two electrons occupying the
impurity and with a SU(M) orbital symmetry.
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APPENDIX C: COMPARISON BETWEEN KANAMORI
AND DWORIN-NARATH MODELS

Using parameter α [Eq. (5) in the main text] the impurity
interaction can be continuously tuned between the Dworin-
Narath (α = 0) and the Kanamori (α = 1) form. Even though
the SO(3) orbital symmetry is dynamically restored to SU(3)
at low energies and hence the behavior of the two models
is similar there are quantitative differences that we illustrate
here.

In Fig. 7 we present the spin and the orbit Kondo
temperatures as a function of Hund’s coupling for different

values of α. Overall a qualitatively similar behavior is found.
At small hybridizations up to an order of magnitude difference
is found for large J . For small hybridization the spin Kondo
temperature for Dworin-Narath is nonmonotonic at large J

which is not the case for the Kanamori model. The calculated
Kondo temperatures there differ by an order of magnitude
between the two models which can be important for realistic
DMFT calculations where the quantitative agreement with
experiments is desired. Despite the overall similarity of
the Dworin-Narath and Kanamori results, the more realistic
Kanamori interaction needs to be used there.

[1] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[2] K. Haule and G. Kotliar, New J. Phys. 11, 025021 (2009).
[3] P. Werner, E. Gull, M. Troyer, and A. J. Millis, Phys. Rev. Lett.

101, 166405 (2008).
[4] J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, and

A. Georges, Phys. Rev. Lett. 106, 096401 (2011).
[5] P. Hansmann, R. Arita, A. Toschi, S. Sakai, G. Sangiovanni, and

K. Held, Phys. Rev. Lett. 104, 197002 (2010).
[6] A. Georges, L. d. Medici, and J. Mravlje, Annu. Rev. Condens.

Matter Phys. 4, 137 (2013).
[7] Z. P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011).
[8] L. deMedici, in Iron-Based Superconductivity, Springer Series

in Materials Science, Vol. 211, edited by P. D. Johnson, G. Xu,
and W.-G. Yin (Springer International Publishing, Berlin, 2015),
pp. 409–441.

[9] L. Fanfarillo and E. Bascones, Phys. Rev. B 92, 075136 (2015).
[10] A. Hewson, The Kondo Problem to Heavy Fermions (Cambridge

University Press, Cambridge, 1993).
[11] A. A. Khajetoorians, M. Valentyuk, M. Steinbrecher, T. Schlenk,

A. Shick, J. Kolorenc, A. I. Lichtenstein, T. O. Wehling, R.
Wiesendanger, and J. Wiebe, Nat. Nanotechnol. 10, 958 (2015).

[12] H. T. Dang, M. dos Santos Dias, A. Liebsch, and S. Lounis,
Phys. Rev. B 93, 115123 (2016).

[13] L. de’Medici, J. Mravlje, and A. Georges, Phys. Rev. Lett. 107,
256401 (2011).

[14] J. R. Schrieffer, J. Appl. Phys. 38, 1143 (1967).
[15] C. Jayaprakash, H. R. Krishna-murthy, and J. W. Wilkins, Phys.

Rev. Lett. 47, 737 (1981).
[16] B. A. Jones and C. M. Varma, Phys. Rev. Lett. 58, 843

(1987).
[17] Y. Kuramoto, Eur. Phys. J. B 5, 457 (1998).
[18] H. Kusunose and K. Miyake, J. Phys. Soc. Jpn. 66, 1180 (1997).
[19] S. Yotsuhashi, H. Kusunose, and K. Miyake, J. Phys. Soc. Jpn.

70, 186 (2001).
[20] T. Pruschke and R. Bulla, Eur. Phys. J. B 44, 217 (2005).
[21] A. H. Nevidomskyy and P. Coleman, Phys. Rev. Lett. 103,

147205 (2009).

[22] Y. Nishikawa and A. C. Hewson, Phys. Rev. B 86, 245131
(2012).

[23] L. Dworin and A. Narath, Phys. Rev. Lett. 25, 1287 (1970).
[24] Z. P. Yin, K. Haule, and G. Kotliar, Phys. Rev. B 86, 195141

(2012).
[25] C. Aron and G. Kotliar, Phys. Rev. B 91, 041110 (2015).
[26] K. M. Stadler, Z. P. Yin, J. von Delft, G. Kotliar, and A.

Weichselbaum, Phys. Rev. Lett. 115, 136401 (2015).
[27] I. Okada and K. Yosida, Prog. Theor. Phys. 49, 1483 (1973).
[28] J. Schrieffer and P. Wolff, Phys. Rev. 149, 491 (1966).
[29] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-

particle Systems (Courier Corporation, North Chelmsford,
2003).

[30] L. de Leo, Ph.D thesis, SISSA, 2004.
[31] P. W. Anderson, J. Phys. C: Solid State Phys. 3, 2436 (1970).
[32] T. Kuzmenko, K. Kikoin, and Y. Avishai, Phys. Rev. Lett. 89,

156602 (2002).
[33] K. Kikoin and Y. Avishai, Phys. Rev. B 65, 115329 (2002).
[34] L. Borda, G. Zaránd, W. Hofstetter, B. I. Halperin, and J. von

Delft, Phys. Rev. Lett. 90, 026602 (2003).
[35] K. Kikoin, M. N. Kiselev, and M. R. Wegewijs, Phys. Rev. Lett.

96, 176801 (2006).
[36] A. J. Keller, S. Amasha, I. Weymann, C. P. Moca, I. G. Rau,

J. A. Katine, H. Shtrikman, G. Zaránd, and D. Goldhaber-
Gordon, Nat. Phys. 10, 145 (2014).
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