
PHYSICAL REVIEW B 95, 035107 (2017)

Fine structure of the spectra of the Kondo lattice model:
Two-site cellular dynamical mean-field theory study
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We study the antiferromagnetic and paramagnetic Kondo insulator phases of the Kondo lattice model on
the cubic lattice at half filling using the cellular dynamical mean-field theory (CDMFT) with the numerical
renormalization group (NRG) as the impurity solver, focusing on the fine details of the spectral function and
self-energy. We find that the nonlocal correlations increase the gap in both the antiferromagnetic and Kondo
insulator phases and shrink the extent of the antiferromagnetic phase in the phase diagram but do not alter
any properties qualitatively. The agreement between the numerical CDMFT results and those within a simple
hybridization picture, which adequately describes the overall band structure of the system but neglects all effects
on the inelastic-scattering processes, is similar to that of the single-site DMFT results; there are deviations that
are responsible for the additional fine structure, in particular for the asymmetric spectral resonances or dips that
become more pronounced in the strong-coupling regime close to the antiferromagnet-paramagnetic quantum
phase transition. These features appear broader in the CDMFT mostly due to numerical artifacts linked to more
aggressive state truncation required in the NRG.
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I. INTRODUCTION

Heavy-fermion materials have unusual properties due to
strong correlations that still lack a complete microscopical
understanding despite many years of continuous research [1,2].
These compound materials consist of lanthanide or actinide
atoms and other metallic elements. Typical examples are
Ce3Bi4Pt3, YbB12, CeNiSn, SmB6, and CeRh2Si2 [3–6]. The
correlation in these materials is due to localized f orbitals with
strong on-site repulsion that are coupled to conduction-band
electrons (spd bands), resulting in high effective mass en-
hancement of their Fermi-liquid quasiparticles. Consequently,
phenomena such as unconventional (spin-mediated) super-
conductivity, complex magnetism, huge thermopower, and, in
general, very rich phase diagrams are found in heavy fermions
[7,8]. In some cases, these materials have semiconducting or
insulating properties at low temperatures (Kondo insulators)
[9–11].

The minimal model for heavy fermions is the Kondo lattice
model (KLM) [12]. It consists of two bands: a noninteracting
itinerant band (spd band) coupled to a localized orbital at
each lattice site (f band). Projecting out high-energy double-
and zero-occupancy f states through the Schrieffer-Wolff
transformation allows us to represent the f electrons as local
moments coupled to the itinerant electrons with coupling
constant J [13]. The KLM qualitatively describes the crucial
features of heavy-fermion materials. At high temperatures,
the f moments are nearly free since the itinerant electrons
are effectively decoupled; thus the material behaves as a
conventional metal. At low temperatures, a local f moment
is screened by itinerant electrons (Kondo effect) [14,15]. The
lattice variant, where the screening occurs at each site, leads to
a coherent state which is a strongly renormalized Fermi liquid
with f states included in the Fermi volume; the f states thus
become itinerant as well. Exactly at half filling, the chemical
potential lies inside the gap between the resulting effective
bands, and the system is insulating, while at finite doping the

chemical potential lies in a part of the band with very flat
dispersion, giving rise to the heavy-fermion behavior.

In this work we study the KLM on a cubic lattice exactly at
half filling. There are two competing effects [16]: the effective
Ruderman–Kittel–Kasuya–Yosida (RKKY) [17] interaction
stabilizes the antiferromagnetic insulator for J < Jc, while
at higher J , the system is a paramagnetic Kondo insulator. In
our previous single-site dynamical mean-field theory (DMFT)
study in Ref. [18], we found additional fine structure of spectra
in the antiferromagnetic phase. In the momentum-resolved
spectral functions, we have observed that the hybridized bands
are not truly degenerate at the band center and that the local
(momentum-integrated) spectral function exhibits narrow fea-
tures, “spin resonances,” inside the bands. They become more
pronounced in the strong-coupling Kondo antiferromagnet,
where they can be easily distinguished from the gap edges.
The origin of spin resonances can be explained as follows.
In the paramagnetic phase, a single-pole hybridization ansatz
for the self-energy is valid. In the antiferromagnetic phase, we
need to extend it to account for the staggered magnetizations
of itinerant and f moments as [19]

�ασ (z) = ασh + Ṽ 2

z − ασH
, (1)

where α = +1, − 1 corresponds to sublattice A or B, σ is the
spin, Ṽ can be interpreted as the renormalized hybridization
between the c and f bands in the hybridization picture for
the periodic Anderson model, h is the staggered exchange
field of band electrons, and H is the staggered exchange field
of f electrons. If the quasilocal compensation criterion h =
−H [19] is slightly violated, there is an avoided crossing of
branches around

ω∗ =
√

Ṽ 2 + h2. (2)

That would lead to an opening of a small gap in a noninter-
acting system. Because the system is interacting, however, the
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imaginary part of the self-energy is nonzero, and the avoided
crossing results in the spectral function amplification (spin
resonance) or reduction (dip) around ω∗.

There have been concerns that these features are an artifact
of the single-site approximation of the DMFT and that they
would not persist in a more refined treatment of the problem.
The inclusion of nonlocal fluctuations can change the structure
and phases, an example of which is the pseudogap formation
in the Hubbard model [20–22].

Existing two-site cellular DMFT (CDMFT) studies using
a quantum Monte Carlo (QMC) impurity solver on the
related periodic Anderson model mostly focus on details
away from half filling (heavy-fermion metallic phase), where
they find that the antiferromagnetic Néel temperature is
significantly lowered compared to the DMFT results [23,24].
The dual-fermion study in Ref. [25], however, suggests that
the antiferromagnetic phase is not reduced significantly, so
long-range correlation appears not to play an important role in
this problem.

This work extends the single-site DMFT study by the
cellular DMFT (CDMFT) calculation with the numerical
renormalization group (NRG) as an impurity solver, thus
also partially taking into account the nonlocal fluctuations.
We study the transition from the weak-coupling (band/Slater
antiferromagnet) regime via the strong-coupling (Kondo an-
tiferromagnet) regime to the paramagnetic Kondo insulator
at exactly half filling, focusing on the detailed structure of
the spectral functions accessible with the CDMFT(NRG).
The method works on the real axis, so there is no need for
analytical continuation as in the QMC, where it introduces
new uncertainties to the spectral function calculation.

This paper is organized as follows. In Sec. II, we describe
the KLM and the CDMFT(NRG) method. In Sec. III, we
discuss the systematic errors in the CDMFT(NRG). In Sec. IV,
the comparison between the single-site DMFT and two-site
CDMFT is presented, focusing on the dependence of the spin
resonance, gap size, and phase transition. In Appendix A, we
discuss the discretization of the impurity problem, followed
by the construction of the Wilson chain for the multichannel
impurity model in Appendix B.

II. MODEL AND METHOD

The KLM consists of a lattice of local moments sf

i coupled
to the conduction-band electrons through the on-site exchange
coupling J > 0,

H =
∑
kσ

εkc
†
kσ ckσ + J

∑
i

sf

i · sc
i , (3)

where ciσ annihilates the conduction electron at site i, ckσ is the
corresponding Fourier transform, sc

i = 1
2

∑
σσ ′ c

†
iσ (τσσ ′)ciσ ′

(with τ being Pauli matrices) is the spin of the conduction
electron at site i, and εk is the dispersion relation for
the noninteracting conduction-band (c) states. For the cubic
lattice, the dispersion relation reads

εk = −2t(cos k1 + cos k2 + cos k3) (4)

for lattice spacing a = 1 and nearest-neighbor hopping t .
In the cellular DMFT, we choose a supercell that tiles

the original lattice. In our case, the supercell contains two

sites, α = A,B, and supports Néel antiferromagnetic order.
The noninteracting Green’s function in the supercell basis for
the cubic lattice is thus

G−1
0 (K,z) =

(
(z + μ)I −ξKI

−ξ ∗
KI (z + μ)I

)
, (5)

where z = ω + iη (z = ω − iη) corresponds to the retarded
(advanced) Green’s function G0(K,z) with η > 0 infinitely
small, the matrix blocks correspond to A and B sites, internal
block indexes are used for spins, and

ξK = −t(1 + ei(K1+K2) + eiK1

+ eiK2 + eiK3 + ei(K1+K2−K3)), (6)

where Kl = K · Al are values in the range [−π,π ), with Al

being vectors that define the supercell:

A1 = a(1,1,0),

A2 = a(1, − 1,0), (7)

A3 = a(1,0,1).

In the CDMFT, the self-energy is assumed to be of the
specific form

�αα′σ (R,R′,z) = �α,α′,σ (z)δR,R′ . (8)

In other words, the self-energy is translation invariant in the
superlattice and describes the interactions within the supercells
exactly. The interactions between the supercells are accounted
for in a mean-field way. The K-resolved lattice Green’s
function in the CDMFT is

G−1(K,z) =
(

(z + μ)I − �AA(z) −ξKI − �AB(z)

−ξ ∗
KI − �BA(z) (z + μ)I − �BB(z)

)
.

(9)

Using the self-energy approximation in Eq. (8), one can
transform the lattice problem to an impurity problem subject
to the self-consistency equation [26–28]

�(z) = (z + μ)I − t − G−1
local(z) − �(z), (10)

with

t =
(

0 −tI

−tI 0

)
(11)

and

Glocal(z) = 1

N

∑
K

G(K,z), (12)

where N is the number of supercells in the lattice.
The impurity of the impurity problem contains sites within

one supercell,

Himp =
∑
α,σ

ε0,αd†
α,σ dα,σ − t

∑
σ

(d†
A,σ dB,σ + H.c.)

+ J
∑

α

sd
α,i · sf

α,i , (13)

where dα,σ is an annihilation operator at the impurity, ε0,α are
the on-site energies of the impurity, α is the site index within
the supercell, and σ is the spin index. The coupling to the
bath and the bath energies are completely characterized by the
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hybridization function �(z), which in the two-site cluster case
takes the form of a 4 × 4 matrix.

The self-consistency is achieved by an iterative scheme:
we start with a hybridization function �(z) and solve the
impurity problem to obtain the self-energy followed by the
self-consistency equation (10) to obtain a new �(z) until
the integrated difference between consecutive local Green’s
functions is less than ε, in our case ε = 10−4.

We use the NRG to solve the resulting impurity problem
[15]. Because the NRG works on the real frequency axis, the
spectral representation of the hybridization �(z) is needed. For
the CDMFT, the hybridization function has off-diagonal ma-
trix elements, and both advanced and retarded hybridizations
are needed to find its spectral representation:


(ω) = i

2
[�(ω + iη) − �(ω − iη)]. (14)

The bath is represented by a set of discrete states corresponding
to logarithmic intervals ±[�1−n−z−1,�1−n−z], where � > 1
is the discretization parameter. Every interval couples to the
impurity (star basis), and z ∈ (0,1] defines the interleaved
meshes [29]. The star representation is then transformed to the
semi-infinite Wilson chain. The calculation of the coefficients
in the Wilson chain from the hybridization function is
given in Appendix B. The impurity model has two channels
corresponding to the A and B sites with nonzero interchain
coefficients on the Wilson chain. The off-diagonal coefficients
can be complex.

The chain is iteratively diagonalized, keeping only the
low-energy states. The truncation is controlled by the number
of states kept Nkeep or the highest-energy state kept, E <

Ecutoff�
−(n+1)/2 for the nth iteration. We use the full density

matrix to calculate the spectra [30,31]. We make use of charge
and spin z projection symmetry of the problem.

The self-energy matrix is calculated using the correlator
[32]

Fij (ω) = i

∫ ∞

0
eiωt 〈{[di,Himp](t),d†

j }〉dt. (15)

In the NRG, we calculate its spectral representation, AF (ω).
One then calculates the retarded and advanced correlators,

ReF(ω ± iη) = P

∫
ReAF (ω′)dω′

ω − ω′ ± π ImAF (ω),

ImF(ω ± iη) = P

∫
ImAF (ω′)dω′

ω − ω′ ∓ πReAF (ω) (16)

[and similarly for the impurity Green’s function Gimp(z)], and
the self-energy is calculated as the matrix ratio:

�(z) = F(z)Gimp(z)−1. (17)

The calculation works well because the oscillatory NRG
artifacts cancel out upon division, even for large values of
the discretization parameter �.

After calculating the self-energy (both retarded and ad-
vanced), we calculate its spectral representation

A�(ω) = i

2π
[�(ω + iη) − �(ω − iη)]. (18)

Due to numerical problems it may occur that spectral
representation of the self-energy is not positive definite,

A�(ω) < 0. This violates the causality. If the positive-definite
requirement is broken at one iteration, the problem gets even
more pronounced in the next one, leading to convergence
problems. For each frequency, we thus make A�(ω) positive
definite. We find that the best procedure is to first make
all diagonal elements positive, Aii > εclip. We then use an
eigenvalue decomposition, replace all negative eigenvalues
with εclip, and reconstruct the matrix, thus forcing it to be
positive definite. We use a small clipping value εclip = 10−4.

The self-energy has nonzero asymptotic value that has to
be handled separately. We extract it from the high-frequency
asymptote of �(ω ± iη) by fitting tails on left and right sides
with B± + C±/z and then using �(∞) = (B+ + B−)/2. The
reconstructed value is therefore

�clipped(ω ± iη) =
∫

Aclipped
� (ω′)dω′

ω ± iη − ω′ + �(∞). (19)

The CDMFT implemented on the real axis is very similar
to that on the imaginary axis, with one difference: one
needs to calculate both advanced and retarded versions of all
objects (F,Gimp,G,�,�) so we can go back to the spectral
representation when the NRG is performed. In the ideal case,
Glocal(z) and Gimp(z) would match in the converged solution.
Due to the improved calculation of the self-energy in Eq. (17),
Gimp(z) has more broadening artifacts, so one should match
only basic features. If the procedure converges to a nonphysical
solution, Gimp(z) and Glocal(z) usually show very different
features (for example, one has a gap, and the other does not).
Restarting the calculation with a more appropriate initial �(z)
usually remedies the convergence problems in these cases.

If not stated otherwise, the results are presented for the cubic
lattice with half bandwidth D; therefore the hopping constant
is t/D = 1/6. We use the NRG discretization parameter
� = 7 and keep up to Nkeep = 4500 states in each iteration in
the CDMFT; this produces some energy-truncation artifacts;
however, much higher values of Nkeep are not accessible due to
memory constraints. For consistency the same value of � = 7
is used in the single-site DMFT as well. All calculations
use the improved self-energy calculation, Nz = 8 different
interleaved meshes to reduce finite-size effects, and spectral
broadening with the broadening parameter b = 0.35. We use
5 million K points with artificial broadening η = 0.001 to
produce the local Green’s function. The CDMFT calculations
use the discretization scheme described in the Appendix A,
while the DMFT calculations use the adaptive discretization
without artifacts [33].

III. ANALYSIS OF THE SYSTEMATIC
ERRORS IN THE CDMFT(NRG)

There are two main parameters that control the artifacts of
the impurity solver: the discretization parameter � and the
maximum number of states kept after each iteration Nkeep.

The NRG calculation for the two-site clusters have to be
performed with high values of the discretization parameter �

and low Nkeep in order to stay within memory constraints. The
feasibility of calculations with a very high � = 7 should be
attributed to improved self-energy calculation, without which
the CDMFT produces very inaccurate results. Because the
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ŽIGA OSOLIN AND ROK ŽITKO PHYSICAL REVIEW B 95, 035107 (2017)

0.0

0.5

1.0

1.5

2.0
A

(ω
)D

(a) CDMFT Λ = 9

Λ = 7

Λ = 5

−1.0 −0.5 0.0 0.5 1.0

ω/D

0.0

0.5

1.0

1.5

2.0

A
(ω

)D

(b) DMFT Λ = 9

Λ = 7

Λ = 5

Λ = 2

FIG. 1. Spin-averaged local spectral function for different values
of the discretization parameter � for (a) the CDMFT and (b) DMFT.

discretization grid is very coarse at high �, it is important to
use the z averaging to reduce the finite-size effects.

For Nkeep = 4500, we see that lowering � shifts peaks but
does not change the signature features of the spectral function
(Fig. 1). This is very encouraging because without high values
of �, the two-site cluster NRG computations are infeasible: for
example, even for � = 5, one CDMFT iteration for a single
interleaved mesh requires around 20 hours on 16 cores. The
results are essentially unchanged in the DMFT [Fig. 1(b)] for a
very broad range of �. Here we also plot the � = 2 result that
almost overlaps with other curves; thus we expect the DMFT
results to be very close to the � → 1 continuum limit even
for surprisingly large �. Additionally, the antiferromagnetic-
Kondo insulator phase transition point in the DMFT is not
changed by � (not shown).

The truncation plays a more important role than � in the
CDMFT. We describe the energy truncation at iteration i with
Ei

max: it is the energy of the state with the highest energy still
not truncated. These energies for J/D = 0.3 are presented in
Table I. Even for the highest Nkeep = 8000, the states in the first
iteration are already truncated. We would need to keep 16 000
states to avoid truncation in the first iteration and 16 times
more to avoid it in the second iteration. In the second iteration,
we are omitting 94% of the states, many in the [0,Ecutoff]�−3/2

energy window. We would need to keep up to approximately

TABLE I. CDMFT truncation for J/D = 0.3 and z = 1. The
percentage of states kept is shown in parentheses; all states are already
truncated in the first iteration.

Nkeep E1
max/�

−1 E2
max/�

−3/2 E3
max/�

−2 E4
max/�

−5/2

100 0.66 (0.6%) 1.64 3.12 3.6
500 0.718 (3%) 1.41 3.46 3.4
1500 1.23 (9.3%) 3.6 4.46 5.58
3000 1.74 (18.7%) 4.02 4.82 6.61
4500 1.79 (28%) 4.0 5.0 6.88
8000 2.34 (50%) 4.36 5.46 7.34

ω/D
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2

3

A
σ
(ω

)D

(a) CDMFT

500
1500
4000
8000

−0.6 −0.3 0.0 0.3 0.6

ω/D
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2

3

4

A
σ
(ω

)D

(b) DMFT

300
600
700
1000
6000

FIG. 2. Spin-resolved local spectral function for different Nkeep

(b) in the CDMFT and (b) in the DMFT.

300 000 states to avoid truncation due to Nkeep in the second
iteration; the memory and computation requirements are too
high for large values of Nkeep. The limit for ∼100 GB memory
is around Nkeep = 8000.

In order to discuss the artifacts of the energy truncation, we
study it more carefully in the DMFT, where we decrease Nkeep

to low values to emulate the effect of truncation in the CDMFT
[Fig. 2(b)]. The results for Nkeep = 6000 have no truncation
artifacts at all and serve as the reference. For Nkeep = 1000,
the curve still essentially overlaps with the reference. The first
difference appears for Nkeep = 700, where the curve around the
spin resonance (peak left of the band edge) slightly broadens.
The spin resonance becomes broader as we decrease Nkeep

down to 300, but all other features remain in nearly the same
position. As Nkeep is decreased further, the differences become
qualitative; this is the limit where we truncate too many states
for the DMFT to converge to a stable and physically correct
solution. In Table II, we show the highest energies of the
states still taken into account for the first few iterations for
interleaved mesh z = 1. For Nkeep > 600, the states are clipped
by Ecutoff , and we are reproducing all features, including the
spin resonance.

Comparing the evolution of the spectral function for
different values of Nkeep in Fig. 2(a), one can relate the CDMFT
solution for Nkeep = 500–8000 to a region around Nkeep ≈ 300
in the DMFT; this corresponds to spectral functions that
already resolve most of the features with the spin resonance
broadened. If Nkeep is too low in the CDMFT, the solution does

TABLE II. DMFT truncation for J/D = 0.3 and interleaved
mesh z = 1.

Nkeep E1
max/�

−1 E2
max/�

−3/2 E3
max/�

−2 E4
max/�

−2

200 0.99 4.79 8.5 7.91
300 0.99 5.18 9.1 7.8
400 0.99 7.2 9.4 9.8
600 0.99 10 10 10
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not converge. The high-resolution region is not accessible to
the CDMFT due to memory constraints.

This analysis indicates that even though we are using
rather severe state truncation in the CDMFT, the results for
J/D = 0.3 and T = 0 are qualitatively valid. We, however,
expect quantitative deviations from ideal fully converged
results. For instance, in order to capture phase transitions,
the number of states required is increased. The CDMFT does
not converge for J/D = 0.35–0.45, where the phase transition
between the AFM and the KI occurs. The DMFT emulation
even with Nkeep = 700 does not converge for J/D = 0.43,
and the area of nonconvergence is wider if Nkeep is decreased.
The same is true for T > 0 when capturing the thermal
Néel transition. At higher temperatures, higher-energy states
become increasingly important as their contribution to the
spectral function is increased. The effect of the state truncation
is that the weight of the truncated states is transferred to
the kept states. The kept states are used to describe the
low-temperature behavior; thus the state truncation enhances
the stability of the low-temperature phases. As a consequence,
the Néel transition is shifted to higher temperatures. In the
DMFT with Nkeep = 300, for instance, the Néel temperature
is raised by approximately a factor of 10 compared to the fully
converged results at high Nkeep. This explains the CDMFT
artifacts when trying to capture the Néel transition, where the
transition temperature is severely overestimated; in fact, we
find the CDMFT transition temperature is higher than in the
fully converged DMFT.

To test the accuracy further, we also calculated the results
for the periodic Anderson model, which we can compare to the
DMFT and CDMFT calculated using the QMC as an impurity
solver [23]. For the Néel transition at V/D = 0.18, εf /D =
−0.6, and U/D = 1.2, we obtain T DMFT

N /D ≈ 0.012, which
is very close to the QMC result, T DMFT

N /D = 0.015. We,
however, strongly overestimate the CDMFT transition that
occurs at T CMDFT

N /D = 0.02 in our case (for Nkeep = 4500),
while, using the QMC, one finds T CDMFT

N /D = 0.004. This
further confirms that CDMFT(NRG) has severe artifacts for
T > 0 for accessible values of Nkeep. For this reason we focus
on the T = 0 case in the following.

IV. FINE STRUCTURE OF SPECTRA IN THE
KONDO LATTICE MODEL

The origin of the antiferromagnetism at T = 0 in the KLM
depends on the value of the exchange coupling J . At low J , the
system can be described by the Slater AFM (weak-coupling
Hartree-Fock theory) [34]. The main properties are inverse
square-root Slater singularities at the gap edges, with c states
only weakly polarized and f states completely polarized in
the opposite direction at the same site. The two-site CDMFT
results nearly overlap with the DMFT results in this region
(see Fig. 3 for J/D = 0.1).

In the intermediate regime J ∼ 0.3D, the correlations
are stronger, and the system is no longer well described by
weak-coupling theories. As J is increased further, the Kondo
mechanism prevails over the RKKY. The quantum phase
transition between the AFM and the Kondo insulator within
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FIG. 3. Local spectral functions as J is increased until a transition
to a paramagnetic phase occurs.

the CDMFT follows the same qualitative picture as in the
single-site DMFT (Fig. 3) but is shifted to lower values of J .

At low temperatures and for J in the parameter range of the
strong Kondo effect but still in the antiferromagnetic phase,
we find an additional structure detached from the band edge:
the “spin resonance.” We first discuss the DMFT results for
J/D = 0.3 presented in the bottom row in Fig. 4. In the
occupied band, there is a dip for minority spin and a sharp
peak for majority spin; the resonance is also visible in the spin-
averaged spectral function, A = A↓ + A↑, shown in Fig. 4(d).

The origin of these features can be traced to the momentum-
resolved spectral function A(k,ω), plotted in Fig. 5(a). The
close-ups on the regions where the quasiparticle branches
should intersect reveal that the spectral dip is associated with a
reduced spectral weight between the branches, i.e., an avoided
crossing, while the peak corresponds to an enhancement
between two branches.

These features can be described in the extended hybridiza-
tion picture in Eq. (1) if we allow for the violation of quasilocal
compensation (H �= −h) and for the shifts of the poles away
from the real axis. The shape of the self-energy in Fig. 4(f) is
in at least qualitative agreement with the one-pole structure,
while the imaginary part in Fig. 4(h) is nearly a δ function
at the band edge, as expected. The DMFT results confirm the
presence of additional features around the energy ω∗ defined
in Eq. (2).

In the top row in Fig. 4, we show the corresponding
results in the two-site CDMFT: the spin resonances persist
but become broader and obtain a Fano-resonance-like shape
[35]. The DMFT results also indicate that the resonances have
asymmetric shape, but the resonance width is so small that
we often do not see the dip associated with the peak. The
significant similarity between the CDMFT and the DMFT
results is also seen from the self-energies, which have the
same features but are different in magnitude (the DMFT results
in Fig. 4 for self-energies are scaled by 3). This is directly
related to the increased gap in the CDMFT compared to
the DMFT due to the additional dynamic antiferromagnetic
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FIG. 4. Comparison of the CDMFT (top) and DMFT (bottom) results for J/D = 0.3.

intersite correlations we take into account in the CDMFT; the
same mechanism is responsible for the gap widening in the
Hubbard model [21].

The K-resolved spectral function in the CDMFT [Fig. 5(a)]
shows a structure very similar to that in the DMFT; that is,
the spin resonances are associated with the (π,π,π ) K point,
corresponding to εK = 0 in the DMFT. The slices of the

K-resolved spectral function (Fig. 6) emphasize the similari-
ties in the structure with one difference: the CDMFT results
have broader peaks, especially for K = (π,π,π ). There are two
effects that can contribute to broader peaks: interactions taken
into account in the CDMFT exactly compared to the mean-field
treatment in the DMFT and the energy truncation artifacts in
the CDMFT. The truncation artifacts broaden all features and

FIG. 5. (a) K-resolved spectral functions for J/D = 0.3 (strong-coupling regime) within the CDMFT, with close-ups to the region around
(π,π,π ) responsible for the spin resonances. (b) K-resolved spectral function AA↑(ω,ε(k,k,k)) for J/D = 0.3 within the DMFT.

035107-6



FINE STRUCTURE OF THE SPECTRA OF THE KONDO . . . PHYSICAL REVIEW B 95, 035107 (2017)

0

1

2

3

4

5

6

7

8
A

A
↑(

k
,k

,k
,ω

)D

k = π

k = 4

k = 5

k = 6

−1.0 −0.5 0.0 0.5 1.0

ω/D

0

2

4

6

8

A
A
↑(

ε k
,ω

) D

(b) DMFT εk = 0

εk = 0.3

εk = 0.6

εk = 0.9

(a) CDMFT

FIG. 6. (a) Spectral function at constant K within the CDMFT
and (b) constant εK within the DMFT for J/D = 0.3.

are probably the main contribution to the decreased sharpness
of the spin resonances.

The spin resonances appear around J/D ≈ 0.15; at lower
values, they are either not present or cannot be distinguished
from the band edge singularity. The buildup of these reso-
nances is shown in Fig. 3. For J/D = 0.2, one can clearly see
an additional feature for ω < 0 for both DMFT and CDMFT
results, while the enhancement for ω > 0 is not yet detached
from the band. Up to J/D ≈ 0.2, the gap � is still linear in
J in the DMFT results (dashed line in Fig. 7). In the CDMFT
we cannot capture small gaps with the numerical K-summing
procedure.

The f spins are almost fully polarized for small J in
the DMFT [see Fig. 8(a)]. The CDMFT suggests the same
result if we extrapolate the magnetization values to J → 0,
knowing that the result for J/D = 0.1 already has errors due
to K summing. The magnetization of the c band goes to zero
as J → 0 in the DMFT and CDMFT, as expected for the
AFM [34]. Overall, however, the staggered magnetization of
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FIG. 7. Evolution of gap � as J is increased with DMFT (dashed
line) and CDMFT (solid line) for cubic lattice.
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FIG. 8. (a) Sublattice magnetizations, (b) f spin-spin correla-
tions, and (c) f spin-c spin correlations as J is increased with CDMFT
for the cubic lattice. The operator D〈AB〉 is the dynamic part of the
correlation, i.e., 〈AB〉 − 〈A〉〈B〉.

the CDMFT is smaller than in the DMFT. The mean-field
treatment usually overestimates the order, thus taking into
account that additional nonlocal processes decrease the order
parameter.

Interestingly, the gap has a plateau for intermediate J/D in
the range [0.2,0.3] (see Fig. 7). The sublattice magnetization of
the c band increases up to J/D ≈ 0.2 (and 0.25 in the DMFT
case), while the spin magnetization continuously decreases
[Fig. 8(a)].

The DMFT results indicate that the continuous phase
transition from the magnetic to paramagnetic phase occurs
at JC

DMFT = 0.45D (Fig. 8): the magnetization continuously
drops to zero, and the gap is continuous through the
transition. The CDMFT has convergence difficulties for
0.35 < J/D < 0.45, and we could not find a converged
solution in this region. We estimate that because the mag-
netization decreases faster than in the DMFT calculations,
the phase transition occurs at lower J : our estimate is
JC

CDMFT = 0.4D.
For J > JC , the system is a paramagnetic Kondo insulator.

In Fig. 3, one can see that all spin resonances disappear
as soon as staggered order disappears. Interestingly, the
gap in the Kondo insulator for the same J is substan-
tially larger than in the DMFT solution (Fig. 7). Dynamic
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FIG. 9. Double occupancy and the same spin occupancy for the
itinerant band (c) electrons on neighboring sites on the cubic lattice
as a function of J .

antiferromagnetic correlations between neighboring sites are
large and thus increase the gap size as in the AFM
phase [21].

Nonlocal correlations can be qualified through 〈sf,A
z s

f,B
z 〉,

i.e., the probability that the spin on A aligns with spin on sub-
lattice B. In the antiferromagnetic solution at low J , we expect
the Slater AFM to be valid, with spins completely antialigned
〈sf,A

z s
f,B
z 〉 → −1/4. In the DMFT, we are essentially treating

correlation in the mean-field way, and 〈sf,A
z s

f,B
z 〉 is equal to

〈sf,A
z 〉〈sf,B

z 〉. The DMFT results [Fig. 8(b), dashed line] start
at the maximum value of 0.25 for antialigned spins at low
J/D, followed by a smooth transition to no correlation in
the paramagnetic solution. In the CDMFT, however, there are
additional dynamic contributions. In Fig. 8(b), we show that
the dynamic part increases the antialignment compared to the
static value; however, the total value is still lower in absolute
value than in the DMFT, as expected. At J/D = 0.1, there are
probably already artifacts in the CDMFT, so we cannot reliably
say that the correlation increases there. The dynamic part
increases in absolute value in the strongly correlated regime
around J/D ≈ 0.3. The dynamic contribution is nonzero also
in the paramagnetic solution for J > JC

CDMFT , where it falls
slowly with increasing J . This is consistent with the CDMFT
result for the Hubbard model where nearest-neighbor spin
correlations are antiferromagnetic [21]. In turn, the short-range
spin correlations are responsible for the gap widening because
they enhance antiferromagnetism. The gap is wider in the
AFM as in the Kondo insulator phase because the dynamic
correlations persist in the CDMFT solution through the phase
transition.

The double occupancy decreases slightly as J is increased
(see Fig. 9). At the same time, occupancy of spins of the same
flavor at adjacent sites,〈nA

↓nB
↓ 〉 increases with J .

One can also look at the correlations between the c band
and the f moment on the same site [Fig. 8(c)]. The static
(mean-field) value is very small as the magnetization of c

and f sites decreases with increasing J , and the dynamic
contribution promoting singlet formation dominates; that is,
the Kondo effect is dominant. This effect is already well
described within the single-site DMFT framework. After the
phase transition, only the dynamic contribution remains. The
spin correlation between the f spin on site A and the c electron
on site B, 〈sf,A

z sc,B
z 〉, is much smaller than the correlation on

the same site.
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/D
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−H

δ
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FIG. 10. Fit to ansatz (20) for CDMFT (solid lines) and DMFT
(dashed lines) self-energies on the cubic lattice.

The hybridization ansatz from Eq. (1) can be extended to
the CDMFT case by including the matrix elements between
the sites in the cluster �AB(z). We thus write

�↑(ω) =
(

h tAB

tAB −h

)
+ Ṽ 2

[
z −

(
H TAB

TAB −H

)
+ iδ

]−1

,

(20)

where

�↑(ω) =
(

�AA,↑(ω) �AB,↑(ω)

�BA,↑(ω) �BB,↑(ω)

)
. (21)

New parameters tAB and TAB represent additional effective
hoppings between A and B sites. The self-energy for spin ↓ is
analogous with signs of h and H reversed, while the signs of
tAB and TAB are unchanged.

The parameters of the fit to the model are shown in Fig. 10.
The nonlocal correlations do not destroy the approximate va-
lidity of the hybridization picture, as we are able to reproduce
the self-energies for all parameters at least qualitatively. The
fit is best in the intermediate J ≈ 0.3 regime and somewhat
worse for small J , similar to what is found in the DMFT
[18]. The difference between h and −H in the CDMFT
(Fig. 10) confirms that the quasilocal compensation is violated,
thus leading to new features around ω∗ =

√
Ṽ 2 + h2. In fact,

the difference between h and −H is appreciably larger in
the CDMFT compared to the DMFT (dashed lines). Ṽ is
substantially larger in the CDMFT compared to the DMFT
for the same J , leading to a larger gap in the CDMFT. The
values of parameters tAB and TAB are very small.

V. CONCLUSION

We have performed a detailed study of the spectral proper-
ties of the KLM at half filling using both the DMFT and the
two-site cellular DMFT (CDMFT) to account for the nonlocal
effects. We have confirmed the existence of fine structure
(spin resonances) in the itinerant antiferromagnetic phase for
J < Jc also within the CDMFT. These features correspond
to the bands at frequencies given by the crossing point of
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the quasiparticle branches in the center of the noninteracting
band (π,π,π point). They appear due to the inelastic-scattering
processes, which are not taken into account in the simplified
(noninteracting) hybridization picture.

The short-range nonlocal correlations treated exactly with
the CDMFT lower the value of the staggered magnetization
for both f and c sites compared to the DMFT and thus also
shift the quantum transition between the antiferromagnetic and
Kondo insulator phases to a lower value of Jc. The gap is wider
in the CDMFT due to antiferromagnetic correlations between
sites in the supercell. These correlations persist through the
phase transition and also widen the gap in the Kondo insulator
phase.

The two-site CDMFT approach overestimates the paramag-
net formation and thus suppresses the antiferromagnetic region
too much [36]: Jc for larger clusters would thus be somewhere
between the two-site and the single-site DMFT result, and the
staggered magnetization at a specific J would lie somewhere
between the single-site DMFT and two-site CDMFT values.

This work presents the first functional implementation
of the CDMFT with the NRG as the impurity solver. The
tests indicate that when using both the improved self-energy
calculation to minimize the artifacts and the interleaved
meshes, one is able to perform the NRG despite very aggressive
state truncations. One, however, needs to be careful when
addressing regimes near phase transitions or when using it
for finite temperatures, where state truncation leads to severe
artifacts. The study of the antiferromagnetic phases away
from half filling is also not yet possible with NRG due to
convergence problems. As possible future improvements, one
could address those technical issues by either using more
symmetries (especially for models that have fewer broken
symmetries, like the paramagnetic Hubbard model) or using
the interleaved NRG from Ref. [37]. Using larger supercells
is probably prohibitive in the NRG, but one could use the
nonlocal DMFT to study several two-site clusters and merge
the correlations [38].
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APPENDIX A: DISCRETIZATION FOR THE
MULTICHANNEL IMPURITY PROBLEM

We show how to construct the coefficients for a generic
impurity Hamiltonian without any symmetries:

H = Himp +
∑
kij

ε̃kij c̃
†
ki c̃kj

+
∑
kij

(Ṽkij d
†
i c̃kj + Ṽ ∗

kij c̃
†
kj di), (A1)

where ε̃kij represent the on-site energies of the band operator
c̃ and Ṽkij describe the coupling of the impurity to the bath.
The index i = 1, . . . ,Ns in fi can represent spin, sublattice,
orbital, and/or any other degrees of freedom, while the index
j in c̃kj represents the bath degrees of freedom. The range of

indices i and j need not be equal. The impurity Hamiltonian
Himp can consist of any number of di operators.

The first transformation is the diagonalization of ε̃kij since,
for each k, the matrix ε̃k is Hermitian:

Ukε̃kU
†
k =

⎛
⎝εk1 0 · · ·

0 εk2 · · ·
· · · · · · · · ·

⎞
⎠. (A2)

Defining operators in a new basis, ck → Uk c̃k and c†k → c̃†kU
†
k ,

and using Vk = Ṽk · Uk , we get

H = Himp +
∑
ki

εkic
†
kicki

+
∑
kij

(Vkij d
†
i ckj + V ∗

kij c
†
kj di). (A3)

Hence the continuum Hamiltonian can always be transformed
in a form with diagonal on-site terms, while the coupling term
keeps full matrix dependency. We define the hybridization
function in the matrix form,


ij (ω) = π
∑
kl

VkilV
∗
kj lδ(ω − εkl). (A4)

The hybridization describes how the electron hops from state
j on the impurity to the bath and hops back on the impurity
to state i, as we will see shortly in the derivation where we
integrate out the bath degrees of freedom, and this expression
replaces the bath. Note, however, that the hybridization is a
complex, positive-definite quantity. We extend the function 


to the complex plane via

�ij (z) =
∫

dω

ij (ω)

z − ω
, (A5)

where z is a complex number off the real axis. To obtain back
the representation on the real axis, one uses


(ω) = i

2
[�(ω + iη) − �(ω − iη)]. (A6)

We would like to find a mapping to a continuous-band
Hamiltonian,

H = Himp +
∑

i

∫ 1

−1
dεgi(ε)a†

εiaεi

+
∑
ij

∫ 1

−1
dε[hij (ε)d†

i aεj + h∗
ji(ε)a†

εj di]. (A7)

We introduced a one-dimensional energy representation of
states aεi with dispersion gi(ε) and hopping to the impurity
hij (ε). The energies are chosen to lie in the interval [−1,1].
We now relate the coefficients εki and Vkij (or the hybridization
function 
) to functions gi(ε) and hij (ε).

The coefficients are not unique, but a general relation that
must hold can be derived using the action formalism. Because
we deal with fermions, Grassmann algebra is required to the
write the action. The partition function of the model (A3) is

Z1 =
∫

imp

∫
�kiDψ

†
kiDψkie

S1 , (A8)
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where the integration goes over all impurity Grassmann
variables [χ+

i (τ ), χi(τ ), and other impurity variables] and band
Grassmann variables ψ+

ki (τ ) and ψki(τ ). The action is given by

S1(χ,χ †,ψ,ψ†)

= Simp(χ,χ †, . . . )

+
∫ β

0
dτ

∑
ki

(
∂

∂τ
− εki

)
ψ

†
ki(τ )ψki(τ

−)

−
∫ β

0
dτ

∑
kij

[Vkijχ
†
i (τ )ψkj (τ−) + V ∗

kijψ
†
kj (τ )χi(τ

−)].

(A9)

We have replaced ordered operators with Grassmann variables
in correct time slices [cki → ψki(τ−), c†ki → ψki(τ )]. Simp

represents the action on the isolated impurity that depends on χ

and maybe some other Grassmann numbers but not on ψ . The
integration in Eq. (A9) is actually a representation of the sum
over Nβ time slices. We are interested in the limit Nβ → ∞.
We now explicitly write out the time slices, χi(τ ) ≡ χi,n and
χi(τ−) ≡ χi,n−1 (and the same for ψ),

S1(χ,χ †,ψ,ψ†)

= Simp(χ,χ †, . . . ) − β

Nβ

Nβ∑
n=1

∑
ki

εkiψ
†
ki,nψki,n−1

− β

Nβ

Nβ∑
n=1

∑
kij

(Vkijχ
†
i,nψkj,n−1 + V ∗

kjiψ
†
kj,nχi,n−1)

+
Nβ∑
n=1

∑
ki

ψ
†
ki,n(ψki,n−1 − ψki,n). (A10)

The last term comes from the imaginary-time derivative. We
have to integrate over the bath degrees of freedom to obtain
the action concerning only the impurity operators. Because
the bath Grassmann variables appear in the expression only
linearly and quadratically, we can use the Gaussian integral
formula for Grassmann variables:∫

Dψ†Dψ exp

⎡
⎣−

∑
ij

ψ
†
i Gijψj +

∑
i

ψiζ
†
i +

∑
i

ψ
†
i ζi

⎤
⎦

= (detG)−1/2 exp

⎡
⎣−

∑
ij

ζ
†
i (G−1)ij ζj

⎤
⎦. (A11)

Reshaping the action (A10) and integrating over all ψ , the
effective action is

Seff,1 = Simp(χ,χ †, . . . )

+ β2

N2
β

∑
k

Nβ∑
n,m=1

∑
ij,lp

VkilV
∗
kjpχ

†
l,nχp,m

(
G−1

1,k

)
nl,mp

,

(A12)

with

G1,k =
⎛
⎝ −I 0 · · ·

I − β/Nβεk −I · · ·
· · · · · · · · ·

⎞
⎠. (A13)

The first subscript of G1,k signals that G is part of action Seff,1,
while the second index is the k dependence; there is a different
matrix for each k. The matrix indices are (n,l) for rows and
(m,p) for columns; the l,p indices are represented using the
matrix (bold) notation inside the matrix G1,k . Also, note that
εk is diagonal in the internal space.

The derivation of the effective action for the Hamiltonian
(A7) is derived in a similar way,

Z2 =
∫

imp

∫
�kiDψ

†
kiDψkie

S2 , (A14)

with

S2(χ,χ †,ψ,ψ†) = Simp(χ,χ †, . . . ) − β

Nβ

Nβ∑
n=1

∑
i

∫
dεgi(ε)ψ†

i,n(ε)ψi,n−1(ε) − β

Nβ

Nβ∑
n=1

∑
ij

∫
dε[hij (ε)χ †

i,nψj,n−1(ε)

+h∗
ji(ε)ψ†

j,n(ε)χi,n−1] +
Nβ∑
n=1

∑
i

∫
dεψi,n(ε)[ψi,n−1(ε) − ψi,n(ε)]. (A15)

The effective action is

Seff,2 = Simp(χ,χ †, . . . ) + β2

N2

∫
dε

Nβ∑
n,m=1

∑
ij,lp

hil(ε)h∗
jp(ε)χ †

l,nχp,m(G−1
2 (ε))nl,mp, (A16)

with

G2(ε) =
⎛
⎝ −I 0 · · ·

I − β/Ng(ε) −I · · ·
· · · · · · · · ·

⎞
⎠, (A17)
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where g(ε) is a diagonal matrix. To compare actions, we first
use the fact that G1 and G2 are diagonal in the l,p index, and
we can rewrite the sum over l,p to sum over only l in both
effective actions (A12) and (A16). We can also rewrite the sum
over k in (A12) using the relation∑

k

VilkV
∗
j lk(G1,k)−1

nl,ml

=
∫

dε
∑

k

VilkV
∗
j lkδ(ε − εkl)(G1,ε)−1

nl,ml . (A18)

Because G1,k depends on k only through εk , we can change the
notation to G1(εk) ≡ G1,k . We now require [G1(gl(ε))]−1 =
[G2(ε)]−1: there might be other possibilities, but we can fix
this condition and try to find a correspondence of actions in this
form. If we want the action to be the same, all the coefficients
must be the same for every i,j,n,m,ε, and we get∫

dε
∑

l

hil(ε)h∗
il(ε)[G1(gl(ε))]−1

nl,ml

=
∫

dε
∑
l,k

VilkV
∗
j lkδ(ε − εkl)(G1(ε))−1

nl,ml, (A19)

where gl and hil are functions to be determined. Changing
the order of summation and integration and, for each sum,
changing the integration variable on the left side, xl = gl(ε),
one obtains∑

l

∫
dxl

∂fl(xl)

∂xl

hil(fl(xl))h∗
j l(fl(xl))[G1(xl)]

−1
nl,ml

=
∫

dx
∑
l,k

VilkV
∗
j lkδ(x − εkl)[G1(x)]−1

nl,ml, (A20)

with fl(x) being the inverse of gl(x).
Comparing both sides, we arrive at the equation that must

hold for all i, j and x:

∑
l

∂fl(x)

∂x
hil(fl(x))h∗

j l(fl(x)) = 1

π

ij (x), (A21)

where we have used the definition of the hybridization in
Eq. (A4) for the right part. We are now free to choose hil(x)
and fl(x) in any way to satisfy this equation.

The simplest scheme is to choose a linear dispersion in the
continuous model, gl(x) = x, meaning that fl(x) = x. We can
use an eigenvalue decomposition

h(x)h†(x) = 1

π

(x) =

(
U

1√
π

√
D

)(√
D

1√
π

U†
)

, (A22)

where D is diagonal with nonnegative elements because 


is positive definite, 
 > 0; therefore we take the square
root of D elementwise. 
 > 0 follows from the definition in
Eq. (A4); it is constructed by VV†, which is positive definite
by construction for each k, and because each part of the sum is
positive definite, the final expression is also positive definite.
We can therefore express h(x) as

h(x) = 1√
π

√

(x). (A23)

We now perform logarithmic discretization of energies x±
n =

±�1−n−z, where the corresponding intervals I±
n are [−xn, −

xn+1] and [xn+1,xn]. The � parameter is typically around 2 for
high-precision single-band calculations, but it can be as high as
8 and still give reliable results, especially for static properties.
Decreasing � increases the computation cost exponentially
[29,39].

In each interval, we allow only a constant wave function
created by an operator a

†
nσα . We set hij by averaging over the

interval and obtain(∑
l

h
±,n
il h

±,∗n
jl

)
= 1

dn

∫ ±,n

dε

(∑
l

h±
il (ε)h±,∗

j l (ε)

)
dε

= 1

πdn

∫ ±,n

dε
ij (ε), (A24)

where we have just taken the average value of h in each of the
integrals. Using the relation (A23), we can express it using the
hybridization,

h±
n = 1√

πdn

√∫ ±,n

dε
(ε). (A25)

The approximation made in this discretization scheme is that
we neglect all nonconstant wave functions at each interval
(p �= 0). In most NRG discretization schemes this step is
justified by noting that the impurity does not couple to those
states and that they are therefore a correction in the next order.
In our scheme, the impurity states couple also to p �= 0 states
that we simply drop out of the calculation, so we can expect
further artifacts compared to other schemes. These artifacts,
however, still go to zero in the continuum limit � → 1.

We can now rewrite the discretized conduction energy part
of Eq. (A7) on a specific interval as∫ ±,n

dεgi(ε) →
∫ ±,n

εdε. (A26)

Combining all the above expressions, we get a logarithmically
discretized Hamiltonian

H = Himp +
∑
ni

(ξ+
nia

†
niani + ξ−

nib
†
nibni)

+ 1√
π

⎡
⎣∑

ij

d
†
i

∑
n

(γ +
nij anj + γ −

nij bnj ) + H.c.

⎤
⎦,

(A27)

with

γ ±
nij =

(∫ ±,n

dx
(x)

)1/2

ij

(A28)

and

ξ±
n,i = 1

dn

∫ ±,n

xdx. (A29)

Note that linear dispersion is not the only possible way to
discretize. A more sophisticated approach is to first set h to a
constant value in each interval (step functions) and then try to
find the best possible candidate for gl(ε). In this scheme, the
impurity couples directly only to kept states. We formulated
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this method as a least-squares minimization with the constraint
that gl(ε) is bijective but have had limited success. The
least-squares minimization sometimes converges to a local
minimum, and the overall coefficients do not always respect
the symmetries of the hybridization. At the time of writing, an
alternative approach to discretization in an eigenvector basis,
possibly with fewer artifacts, was presented in Ref. [40].

APPENDIX B: WILSON CHAIN FOR THE
MULTICHANNEL IMPURITY PROBLEM

We introduce matrix notation for operators an,

an =

⎛
⎜⎝

an,1

an,2

· · ·
an,N

⎞
⎟⎠, a†n = (a†

n,1,a
†
n,2, . . . ,a

†
n,N ), (B1)

with similar notation for b and semi-infinite chain operators f.
They all obey the anticommutator relations

{an,a†n} = 1. (B2)

Using these new definitions, we can rewrite the Hamiltonian
in Eq. (A27) in the matrix form,

H = Himp +
∑

n

(a†nξ
+
n an + b†

nξ
−
n bn)

+ 1√
π

∑
n

[d†γ +
n an + d†γ −

n bn

+ a†n(γ +
n )†d + b†

n(γ −
n )†d]. (B3)

Note that γ ±
n and ξ±

n are all Hermitian N × N matrices. Known
derivations deal with real matrices, but they can be complex
as well: the magnetic field or any cluster computation has
complex coefficients.

We now define the semi-infinite chain using a transforma-
tion,

fn =
∑
m

(Unmam + Vnmbm),

an =
∑
m

U†
mnfm, (B4)

bn =
∑
m

V†
mnfm,

where fn are vectors with N components. In the matrix form,
we can write the above expression as

f = (U V) ·
(

a
b

)
. (B5)

There is an orthogonality relation∑
n

(UmnU†
mn + VmnV†

mn) = I (B6)

present for each m. These equations represent transformation
to a new basis and the normalization of the wave function
must be preserved. The matrices Unm and Vnm depend on
four indices: two for the internal space, i,j = 1, . . . ,N ; an
index that is connected to the number of f states, m =
0,1,2, . . . ,Nf , which represents an index in the chain; and

an index that represents the interval in the star Hamiltonian,
n = 0,1, . . . ,Nint . The Hermitian U† conjugation is performed
only on the internal space. The impurity couples directly to f0.
It is therefore equal to [from Eq. (B3)]

f0 = (
√

ζ )−1
∑

n

(γ +
n an + γ −

n bn), (B7)

where

ζ =
∑

n

(γ +
n γ +

n + γ −
n γ −

n ). (B8)

We can take the matrix square root of ζ because it is
positive definite and invertible. The coefficients of unitary
transformation are

U0n = (
√

ζ )−1γ +
n , V0n = (

√
ζ )−1γ −

n . (B9)

This transformation is unitary (the first row of matrix coeffi-
cients sums to an identity matrix) due to proper normalization.
Together with the transformation of the conduction band using
Eqs. (B4), the Hamiltonian has the form

H = Himp +
∑
n,m,l

(f†l Ulnξ
+
n U†

mnfm + f†l Vlnξ
−
n V†

mnfm)

+
√

ζ

π
(d†f0 + f†0d). (B10)

We are looking for a transformation to the semi-infinite chain
form, explicitly written as

H = Himp +
∑

n

(f†nεnfn + f†ntnfn+1 + f†n+1t†nfn)

+
√

ζ

π
(d†f0 + f†0d). (B11)

We can now compare these two equations. We treat the f0
operator separately because it is at the end of the chain. The
comparison gives us the equality∑

n,l

(f†l Ulnξ
+
n U†

0n + f†l Vlnξ
−
n V†

0n) = f†0ε0 + f†1t†0. (B12)

By taking the left anticommutator {f0, · } and using the relation
{f,f†A} = A, we obtain

ε0 =
∑

n

(U0nξ
+
n U†

0n + V0nξ
−
n V†

0n). (B13)

We can now express f†0ε0 with operators an and bn. In
Eq. (B12), we can rewrite f†l operators on the left-hand side
back to an and bn, insert the expression of f†0ε0, and get

f†1t†0 =
∑

n

[a†n(ξ+
n U†

0n − U†
0nε0) + b†

n(ξ−
n V†

0n − V†
0nε0)].

(B14)

By anticommutation of the above expression with the Hermi-
tian conjugate of itself and using the relation {Bf,f†A} = BA,
where A,B are matrices, t0 is obtained:

t0t†0 =
∑

n

[(U0nξ
+†
n − ε

†
0U0n)(ξ+

n U†
0n − U†

0nε0)

+ (V0nξ
−,†
n − ε

†
0V0n)(ξ−

n V†
0n − V†

0nε0)]. (B15)
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All the matrices entering in the above equation are Hermitian;
therefore the result is also a Hermitian matrix. The hopping

matrix t0 is positive definite, so we just take the matrix square
root to obtain it.

Expanding the left side of Eq. (B14) into operators an and bn and comparing the coefficients, U1n and V1n are expressed as

U†
1n = (ξ+

n U†
0n − U†

0nε0)(t†0)−1, V†
1n = (ξ−

n V†
0n − V†

0nε0)(t†0)−1. (B16)

With the same procedure, we now treat operators fm,m > 0. Comparing the semi-infinite chain Hamiltonian in Eq. (B11) and
Eq. (B10) yields ∑

n,l

(f†l Ulnξ
+
n U†

mn + f†l Vlnξ
−
n V†

mn) = f†mεm + f†m−1tm−1 + f†m+1t†m. (B17)

Again taking the anticommutator {f†m, · }, the on-site energy matrix is obtained,

εm =
∑

n

(Umnξ
+
n Umn + Vmnξ

−
n Vmn). (B18)

We proceed by writing Eq. (B17) in terms of operators an,bn,∑
n

(a†nξ
+
n U†

mn + b†
nξ

−
n V†

mn) =
∑

n

(U†
mna†n + Vmnb†

n)εm +
∑

n

(U†
m+1,na†n + Vm+1,nb†

n)t†m +
∑

n

(U†
m−1,na†n + Vm−1,nb†

n)tm−1.

(B19)

Expressing f†mt†m and calculating the anticommutator with its Hermitian form allows us to calculate tm [one additional term
compared to Eq. (B15)],

tmt†m =
∑

n

[(Umnξ
+†
n − ε

†
0Umn − t†m−1Um−1,n)(ξ+

n U†
mn − U†

mnεm − U†
m−1,ntm−1)

+ (Vmnξ
−,†
n − ε

†
0Vmn − t†m−1Vm−1,n)(ξ−

n V†
mn − V†

mnεm − V†
m−1,ntm−1)]. (B20)

New coefficients are expressed as

U†
m+1,n = (ξ+

n U†
mn − U†

mnεm − U†
m−1,ntm−1)(t†m)−1, V†

m+1,n = (ξ−
n V†

mn − V†
mnεm − V†

m−1,ntm−1)(t†m)−1. (B21)

A set of recursive relations for the orthogonal transformations
has thus been derived. In the implementation, it is important to
perform the calculations using high precision (using arbitrary-
precision arithmetic). A good value is 3000 mantissa bits.
We also force normalization (unitarity) of the transformation
[Eq. (B6)] after each iteration. Another important strategy is
to enforce the symmetries, especially for bigger matrices. We
use a mask of zeros and ones to enforce zero entries in the
matrices ξn for the parts that should be zero. This is important

because small errors can amplify exponentially in a Wilson
chain iterative procedure. It is important to check that no such
symmetry breaking occurs for the chain lengths considered.
As a rule of thumb, one can simulate chain lengths of around
65 sites for four active complex coefficients (for example,
full 2 × 2 matrices) and around 25 sites for eight coefficients
(for example, 4 × 4 matrices with half of the elements set to
zero due to symmetry). This seems to be sufficient in practice
because we do not need many coefficients for high �.
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[23] D. Tanasković, K. Haule, G. Kotliar, and V. Dobrosavljević,
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