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Recent progress in extremely correlated Fermi liquid theory (ECFL) and the dynamical mean field theory
(DMFT) enables us to accurately compute in the d → ∞ limit the resistivity of the t − J model after setting
J → 0. This is also the U = ∞ Hubbard model. Since J is set to zero, our study isolates the dynamical effects
of the single occupation constraint enforced by the projection operator originally introduced by Gutzwiller. We
study three densities n = .75,.8,.85 that correspond to a range between the overdoped and optimally doped
Mott insulating state. We delineate four distinct regimes separated by three crossovers, which are characterized
by different behaviors of the resistivity ρ. We find at the lowest temperature T a Gutzwiller correlated Fermi
liquid regime with ρ ∝ T 2 extending up to an effective Fermi temperature that is dramatically suppressed from
the noninteracting value by the proximity to half filling, n ∼ 1. This is followed by a Gutzwiller correlated
strange metal regime with ρ ∝ (T − T0), i.e., a linear resistivity extrapolating back to ρ = 0 at a positive T0. At
a higher temperature scale this crosses over into the bad metal regime with ρ ∝ (T + T1), i.e., a linear resistivity
extrapolating back to a finite resistivity at T = 0 and passing through the Ioffe-Regel-Mott value where the mean
free path is a few lattice constants. This regime finally gives way to the high T metal regime, where we find
ρ ∝ T , i.e., a linear resistivity extrapolating back to zero at T = 0. The present work emphasizes the first two, i.e.,
the two lowest temperature regimes, where the availability of an analytical ECFL theory is of help in identifying
the changes in related variables entering the resistivity formula that accompanies the onset of linear resistivity,
and the numerically exact DMFT helps to validate the results. We also examine thermodynamical variables such
as the magnetic susceptibility, compressibility, heat capacity, and entropy and correlate changes in these with
the change in resistivity. This exercise casts valuable light on the nature of charge and spin correlations in the
Gutzwiller correlated strange metal regime, which has features in common with the physically relevant strange
metal phase seen in strongly correlated matter.
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I. INTRODUCTION

The resistivity due to mutual collisions of electrons at low
temperatures reveals the lowest energy scale physics of charge
excitations in metallic systems and therefore is very important.
While it is fairly straightforward to measure experimentally,
it is also one of the most difficult quantities to calculate
theoretically, especially if electron-electron interactions are
strong. Motivated by the unexpected behavior of resistivity
and other variables in cuprate superconductors and related
two-dimensional experimental systems, some works have
postulated that the Fermi liquid theory—originally developed
and justified for weakly interacting systems—would break
down. In its place a zoo of non-Fermi liquids have been
postulated, without necessarily having a rigorous theoretical
underpinning. On the other hand the analytical framework of
the extremely correlated Fermi liquid theory (ECFL) [1] and
the well established dynamical mean field theory (DMFT) [2]
give a different type of result, where the strong interactions
compress the regime of Fermi-liquid type variation to a very
small temperature and frequency scale. This Fermi-liquid
regime is succeeded by a variety of regimes that display
unusual non-Fermi-liquid dependences on frequency and
temperature. The main goal of this work is to elucidate and
characterize the different regimes that arise in the ECFL
and DMFT theories and to provide a quantitative comparison
between the qualitatively similar results of these two theories,

as applied to the infinite-dimensional Hubbard model, with
the Hubbard charge repulsion parameter U taken to infinity,
U → ∞.

In earlier work [3] we have compared the ECFL and DMFT
results for the zero-temperature spectral functions, finding an
encouraging similarity. On scaling the frequency with the
respective quasiparticle weights Z of the two theories the
agreement is even close to quantitative. In the present work
we undertake the more ambitious comparison of the resistivity
and thermodynamic variables at finite temperatures.

In both the ECFL theory and the DMFT, the strong
interactions cause the quasiparticles of the lowest temperature
Fermi liquid to become fragile, i.e., the resulting quasiparticle
weight Z is very small, Z � 1. This is also arguably
the relevant regime in contemporary materials such as cuprate
superconductors, and hence interest in this problem is very
high.

In the problem studied here, namely U → ∞ and d → ∞,
the DMFT theory is formally exact. Further, the possibility
of computing the resistivity from the sole knowledge of the
single-particle Green’s function is enabled by the vanishing of
vertex corrections [4]. Despite these simplifications, obtaining
reliable results for the resistivity is technically formidable due
to the requirement of an impurity solver providing accurate
and reliable results for the self-energy function � on the real
frequency axis for both very low and very high temperatures.
This problem has only recently been solved in Ref. [5],
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almost 25 years after the formulation of the DMFT theory.
The resistivity of the Hubbard model is now known for all
densities and all values of U, including U = ∞. This is a set of
exact results for the resistivity in interacting metallic systems
resulting from inelastic scattering and therefore represents
an important advance in the field. The DMFT results [5,6]
offer a unique opportunity to test a variety of techniques
and approximate methods for computing this variable. The
ECFL formalism, on the other hand, is in its early stages of
development and several technical innovations are ongoing so
as to enable reliable calculations in the challenging regimes of
the density n � 1 [3,7].

Lastly, in a recent work [8] our group has published a
voluminous high-temperature study using series expansion
techniques adapted for very strong correlations, thus extending
our understanding of the resistivity to the full range of
temperatures. This study is on the same model as the present
work and extends the results of Ref. [5] to much higher
temperatures. In these studies the effect the superexchange
J is absent due to the U = ∞ limit, and therefore there is no
superconducting regime that one might expect from a t − J

model in finite dimensions. By taking the limit of infinite U

we have also banished the static superexchange that the DMFT
includes for finite U [9–17]. However, these studies do capture
the notoriously difficult nonperturbative local Gutzwiller
correlation effects on the resistivity quantitatively. It seems
fair to say that our understanding of the strong correlation
problem has advanced significantly with these recent works.

In summary, at the lowest temperatures these earlier
studies [5–8] found a Fermi-liquid type resistivity with ρ ∝
T 2. This regime extends only up to TFL(δ), a Fermi-liquid
temperature scale dependent on the hole density (δ ≡ 1 − n).
We shall term this the Gutzwiller correlated Fermi liquid
(GCFL) regime. This regime is followed by three distinguish-
able regimes with linear in T resistivity having different slopes
and intercepts, which are separated by crossovers; a Gutzwiller
correlated strange metal (GCSM) followed by a “bad metal”
and finally a “high-T metal” regime, as discussed below (see
Fig. 1). The nomenclature stresses that these regimes originate
purely from Gutzwiller correlations (i.e., double occupancy
avoidance). In particular the regimes have no dependence
upon the superexchange energy J or other energy scales which
might be additionally involved in producing the related strange
metal found in cuprates [18,19].

In order to understand the low-temperature regimes, we
would like to throw light on the factors that lead to extraor-
dinarily low values of the Fermi temperature TFL(δ) that are
found. We also wish to provide a detailed understanding of the
behavior of constituent variables that lead to a linear resistivity
in the GCSM regime, starting at this low temperature. Here
the ECFL theory provides us with a great advantage since it is
largely analytical, and one can inspect the various constituents
in detail. It is also interesting to seek a possible causal
relationship between the linear temperature dependence of ρ

in the GCSM regime and the nature of incipient order (either
spin or charge) that might be present. For this purpose, it is
useful to compute, by using the techniques of Refs. [5,7],
the entropy and heat capacity, the magnetic susceptibilities
and compressibility. For completeness we also study the
thermoelectric transport, as well as a few dynamical quantities

FIG. 1. A schematic view of the different regimes of temperature
dependent resistivities found in the calculations of Refs. [5–8].
The various temperature scales are schematic. At the lowest T

we have a Gutzwiller-correlated-Fermi liquid regime (GCFL) with
ρ ∝ T 2. This quadratic variation terminates at a characteristic Fermi
temperature TFL(δ), which is found to be surprisingly small relative
to TBR = δD, the Brinkman-Rice temperature scale (2D is the
bandwidth). Upon warming we reach the Gutzwiller-correlated-
strange metal (GCSM) regime, which is the main focus of this
work. This gives way at higher T to the so-called bad-metal regime
with a resistivity that increases linearly beyond the Ioffe-Regel-Mott
value ρ0 characteristic of disordered metals. The temperature scale
of this regime is TBR discussed above. Finally at the highest T we
reach the high T regime with ρ ∝ T that can be extrapolated back
to pass through the origin. We thus find a total of four regimes
separated by three crossovers. It should be noted that in both theories
considered here, the approximate range of the temperatures scales
are TFL ∼ 0.004–0.01D, and the crossover to the bad-metal regime
occurs at T ∼ 0.04–0.06D for the densities considered (n = 0.75 to
n = 0.85).

such as the self energy of the electrons. In a following
paper we present other dyamical variables such as the optical
conductivity. These quantities provide a complete picture of
the metallic states having various temperature dependences
sketched in Fig. 1.

The lowest temperature Gutzwiller-correlated Fermi liquid
(GCFL) with ρ ∝ T 2 shows enhancements of certain static
susceptibilities that are similar to those of the normal state of
liquid 3He. The almost localized Fermi liquid theory (ALFL)
of these enhancements is discussed by Vollhardt, Wölfle, and
Anderson in Refs. [24,25] on the basis of Gutzwiller’s wave
function and its approximation to the Hubbard model, where
the variation of the Landau parameters with density at fixed
(large) U is considered. In particular Ref. [25] studies the
enhancements of Fermi liquid parameters leading to enhanced
effective mass m∗/m, magnetic susceptibility χspin/χ

0
spin, and

the bulk modulus (i.e., the inverse compressibility). Within the
ALFL all three stated enhancements are proportional to the
inverse of Z in that theory as well as in 3He. We check below
the extent to which this is true in the GCFL regime, to see how
it compares with the predictions of the ALFL theory, and find
that the behavior of the compressibility is somewhat different.
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Upon warming we reach the GCSM regime with a linear
temperature dependence of the resistivity ρ. This regime is
interesting since it is reminiscent of the strange metal regime
in the cuprate phase diagrams [18]. It is remarkable that this
linear resistivity regime extends to very low T , essentially the
TFL(δ), and one wants to know if this behavior is causally
linked to a change in entropy, i.e., to disordering. We aim at
correlating the GCSM regime with the extent of short ranged
spin or charge order in this regime. These should be reflected
in the heat capacity and the entropy gain. By computing these
variables, we show that upon warming from T = 0 substantial
entropy is released as we reach TFL. However in the entire
GCSM regime the magnetic susceptibility is Pauli like, i.e.,
with an approximately T independent behavior, and hence spin
entropy should be unchanged. From a high-T expansion and
on various general grounds, it is known that it changes into a
Curie-Weiss type behavior at the onset of the bad-metal regime.

The GCSM regime is followed by other subtly different T

dependences as described in Sec. III A which are obtained
in the bad-metal regime and the high-temperature regime.
The density dependences of the various crossover scales give
important insight into the physics of the resistivity. With one
exception, all calculations reported here are performed using
both ECFL and single-site DMFT methods. Using the two
methods is very important since it gives us the opportunity
to benchmark the mostly analytical and relatively new ECFL
technique with the established and largely numerical DMFT
method. The magnetic susceptibility is available only from
DMFT, and our presentation below seems to be the most exten-
sive result for this subtle variable reported to date [11,26,27].

The plan of the paper is as follows. In Sec. II we first
make some further technical remarks about the methods.
In Sec. III A we describe the various T dependences of
the resistivity which serve to define the GCFL and GCSM
regimes and also point to the higher T bad-metal and high-T
regimes. In Sec. III B we compare the chemical potential and
compressibility. In Sec. III C we discuss the frequently made
bubble approximation for the charge and spin susceptibilities
and show that the bubble susceptibility is exactly expressible as
an integral of the energy derivative of momentum distribution
function in d = ∞. We also note that it is a good approximation
to the exact result for the charge susceptibility but not so for the
spin susceptibility. In Sec. III D we illustrate the self energy
and local density of states from the two methods and find
that within ECFL the quasiparticles tend to have somewhat
smaller Z at the highest densities, as compared to DMFT. This
causes a few other differences described later. In Sec. III E we
examine further T dependent properties, the heat capacity and
entropy. Section III F discusses the magnetic susceptibility χ

from the DMFT calculations and lists some of the technical
difficulties that prevent its evaluation in the ECFL theory. In
Sec. III G we discuss the thermoelectric transport coefficients,
the Seebeck coefficient, and the Lorenz number as well as
the thermoelectric efficiency. In Sec. IV we discuss the salient
features of our results.

II. METHODS

In ECFL we have thus far used an expansion in the
parameter λ, which plays a role analogous to the quantum

parameter 1
2S

in quantum theories of magnetism, where S is
magnitude of the spin. In the first DMFT-ECFL comparison
paper [3], we used the second order terms in an expansion in
λ. This approximation led to a quantitatively reliable answer
for the quasiparticle weight Z at low temperature only in the
overdoped regime n � .75 but to a nonvanishing value of Z

for n → 1. In the more recent paper [7] this problem was
addressed using the exact, rather than the λ2, version of the
hole number sum rule, together with a cutoff for the tails of the
spectral function at very high energies. This procedure extends
the validity of the second order terms to higher density n �
0.85 so that the Z values at low T tend to zero as the insulating
state is approached and are comparable to, if somewhat smaller
than, the DMFT results. Due to this improvement, we found
that the resistivity is now on the same scale and exhibits
very similar crossover features as the results in Refs. [5,6], as
detailed below. In this work we report the comparison between
the T dependent resistivity and other thermodynamic variables
found from this cutoff scheme [28] and the exact results from
DMFT. We use the Bethe lattice semicircular density of states
D(ε) = 2

πD

√
1 − ε2/D2 in both theories.

The ECFL scheme used here has been described in detail
in Ref. [7] and consists of using the O(λ2) expansion with
the full number sum rule and the Tukey window used to
cut off the spectral width at very high energies. The DMFT
scheme has been described in detail in Ref. [3]. The NRG
calculations [29,30] in this work were performed with the dis-
cretization parameter 	 = 2, using the discretization scheme
from Refs. [31,32] with Nz = 16 interleaved discretization
grids. The truncation cutoff was set at 10ωN , where ωN is the
characteristic energy scale at the N th step of the iteration.
We used charge conservation and spin SU(2) symmetries.
The spectral functions were computed with the full-density-
matrix algorithm [33] and broadened with a log-Gaussian
kernel with α = 0.05, followed by a Gaussian kernel with
σ = 0.3T . The occupancy was controlled using the Broyden
method [34]. The self-energy was computed through the ratio
of correlators, 〈〈nσ̄ dσ ; d†

σ 〉〉/〈〈dσ ; d†
σ 〉〉 [35], corrected by the

term −wUHB/〈〈dσ ; d†
σ 〉〉, where wUHB is the spectral weight

of the upper Hubbard peak which was outside the NRG
energy window (we redid some calculations using the standard
approach that explicitly includes the UHB in the energy
window, using a very large but finite value of U ; we found
excellent agreement between the two computational schemes).

III. RESULTS

In this work we consider the temperature region T �
0.02D, which covers the range up to 200 K if we assume
D ∼ 10000 K , i.e. O(1) eV. Here D is the half bandwidth.
We study three densities (number of electrons per site)
n = 0.75,0.8,0.85. These are typical of the overdoped and
optimally doped cuprates.

A. DC resistivity

We begin with a summary of the results for the resistivity
which form the bedrock for this study. The findings in
Refs. [5–7] are extended in Ref. [8] to higher temperatures,
and from these we have a fairly complete understanding of
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FIG. 2. Comparison of the resistivity computed using the ECFL
(symbols) and the DMFT (dashed). σ0 = 1/ρ0 is the Ioffe-Regel-Mott
conductivity. As n gets closer to unity, the ECFL scheme employed
systematically underestimates Z relative to the exact DMFT values
(see Fig. 6 of Ref. [7]). This lowers the effective Fermi temperature
TFL and simultaneously enhances the magnitude of ρ for T > TFL,
a feature that is prominently visible above. It should be possible to
improve the quantitative agreement between the two theories in the
future [28].

the behavior of ρ at essentially all T . A cartoon of these
is sketched in Fig. 1. The resistivity exhibits a variety of
dependences on T upon warming from the absolute zero: (i)
the Gutzwiller correlated Fermi liquid (GCFL) regime with
a quadratic T dependence ρ ∝ T 2 up to a (hole) density-
dependent Fermi-liquid temperature TFL(δ) (δ = 1 − n); (ii)
the Gutzwiller-correlated-strange metal (GCSM) regime with
a linear T dependence ρ ∝ T + constant (constant < 0), (iii)
a “knee” connecting to the bad-metal (BM) regime with
again a linear T dependence ρ ∝ T + constant (constant > 0).
This regime is so named since the ρ crosses the fiduciary
Ioffe-Regel-Mott maximal resistance ρ0 at temperature on
the order of the Brinkman-Rice energy δD, followed by (iv)
a crossover to a high-temperature regime again with linear
T dependence ρ = AT , devoid of an offset so that the line
extrapolates back to pass through the origin.

In Fig. 2 we present the resistivity in the GCFL and GCSM
regimes. It is striking that the GC strange metal has a robust
linear T resistivity over a wide T scale. The linear resistivity
begins at TFL(δ) which can be driven to low values, ∼45 K (see
Ref. [7]), by the Gutzwiller correlations alone, even though the
bandwidth is of O(2) eV. We emphasize that this unexpectedly
drastic scale reduction yielding TFL � ZD � δD requires a
“hard” calculation for justification and can hardly be argued
from general principles. The slight difference in the TFL(δ)
between the two theories is due to the somewhat different
Z(δ) found in the two theories, for example Fig. 6 in Ref. [7]
shows that the ECFL gives a smaller Z than the DMFT [28].
We also note that using the standard value for ρ0 ∼ 300 μ

cm, the Ioffe-Regel-Mott resistivity [36], the absolute scale of
the resistivity computed in these approaches is quite similar to
that found in the experiments. For example, Fig. 1 in Ref. [7]
compares well on an absolute scale with the well-known
linear resistivity result of S. Martin et al. in Ref. [37] on
Bi2212, where the superconducting phase cuts off the region
T � 80 K.

Building on the analysis of Refs. [5–7], we derive a closed
form expression for the resistivity in terms of the chemical
potential and the real and imaginary parts of the single-particle
self-energy on the Fermi surface [Eq. (7)]. We begin with
the formula (Eq. (41) in Ref. [7]) for the conductivity on the
infinite-dimensional Bethe lattice:

σ = 2πD σ0

∫
dω

∫
dε

(
− ∂f

∂ω

)
φ(ε)ρ2

G(ε,ω), (1)

where σ0 = e2h̄�(0)/D (� is defined in Eq. (39) of Ref. [7]),
σ0 = 1/ρ0, and the transport function φ(ε) = �(ε)/�(0) is
given explicitly in Eq. (40) of Ref. [7] as φ(ε) = �(1 − ε2

D2 ) ×
(1 − ε2

D2 )
3
2 . The single-particle spectral function is

ρG(ε,ω) = 1

π

B(ω)

[A(ω) − ε]2 + B2(ω)
, (2)

where A(ω) ≡ ω + μ − �e �(ω), B(ω) = −�m �(ω), and
all objects depend implicitly on the temperature T . At low
temperatures and frequencies B(ω) � D, so that Eq. (1)
simplifies to

σ = σ0

∫
dω

(
− ∂f

∂ω

)
φ[A(ω)]

B(ω)
. (3)

Following [6], we perform a small-frequency expansion

φ[A(ω)] = φ[A(0)] + . . . ; B(ω) = B0 + B2 ω2 + . . . .

(4)

The linear order term in B(ω) as well as all higher order
terms in B(ω) and φ[A(ω)] make negligible contributions to
the conductivity in the temperature range considered and are
therefore neglected. The integral may be evaluated analytically
and yields

σ = σ0 φ[A(0)]

2πT
√

B2B0
ψ1

(
1

2
+ 1

2πT

√
B0

B2

)
, (5)

where ψ1(z) is the polygamma function, related to the
digamma function, �(z), through ψ1(z) ≡ d

dz
�(z) [38]. The

ratio B0
B2π2T 2 is weakly dependent on temperature and may be

replaced by its zero-temperature limit, see Fig. 3(b). In order
to find this limiting value, consider the GCFL regime where

B0 = B2π
2T 2 (GCFL). (6)

Substituting Eq. (6) into Eq. (5) and eliminating B2, we finally
obtain the simple formula

ρ = 12 ρ0

π2 φ[μ̄ − �e �̄(0)]
× B0, (7)

where we have used that ψ1(1) = π2

6 . Here, we denote the
zero-temperature limit of any variable Q as Q̄ and have used
that φ[A(0)] is practically temperature independent [Fig. 3(c)].
Hence, the resistivity is proportional to the imaginary part
of the self-energy on the Fermi surface. Moreover, the
proportionality constant is very weakly density dependent
(since this is true of φ[Ā(0)]). Equation (7) can be obtained
from Eq. (47) in Ref. [7] by multiplying the RHS of the latter
by the constant 12

π2 and setting T → 0 in the denominator.
The latter equation is obtained by retaining the leading order
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FIG. 3. ECFL calculation of the resistivity and related objects. Panel (a): The resistivity as a function of the temperature using the exact
formula, Eq. (1), compared with the approximation, Eq. (7), for n = 0.75, 0.8, 0.85 (bottom to top). Equation (7) is an excellent approximation
at all densities for all temperatures. Panel (b): Parameters resulting from a low-frequency expansion of the imaginary part of the self-energy
in the vicinity of the Fermi surface, plotted as a function of temperature, for n = 0.75, 0.8, 0.85 (bottom to top). B0 is the self-energy on
the Fermi surface, while B2 is the quadratic-frequency term. The ratio B2π2T 2

B0
→ 1 as T → 0 and is approximately constant as a function of

temperature. Panel (c): φ[A(0)] = φ[μ − �e�(0)], plotted as a function of the temperature, for n = 0.75, 0.8, 0.85 (bottom to top). φ[A(0)]
is practically independent of temperature and has very weak density dependence.

term in the Sommerfeld expansion of Eq. (3). In Fig. 3(a), we
plot the resistivity as a function of the temperature, using both
Eqs. (1) and (7), in the ECFL scheme. We find that Eq. (7) is
an excellent approximation at all densities and temperatures
considered, i.e., it holds in both the GCFL and GCSM regimes.

In the GCFL regime, substituting Eq. (6) into Eq. (7), and
using the fact that B2 is approximately constant, we find that

ρ = 12B̄2 ρ0

φ[Ā(0)]
× T 2 (GCFL). (8)

From Fig. 7 of Ref. [7], we know that B̄2 ∝ 1
Z̄2 , where Z is the

quasiparticle weight on the Fermi surface. Therefore, Eq. (8)
implies that ρ ∝ T 2

Z̄2 in the GCFL regime.
In Fig. 4, we plot the exact resistivity, together with

the approximation Eq. (7), both obtained using the DMFT
calculation [corresponding to Fig. 3(a) in the case of ECFL].
Once again, we find that Eq. (7) is an excellent approximation
at all densities and temperatures considered, i.e., it holds in
both the GCFL and GCSM regimes.

Finally, we note that the important effective Fermi tem-
perature TFL can be estimated as the temperature at which
the resistivity deviates from its low-temperature quadratic
behavior. We find at the three densities considered, the

0.000 0.005 0.010 0.015 0.020
0.00

0.05

0.10

0.15

0.20

0.25

T D

ρ ρ 0

Eq.7

Eq.1

FIG. 4. The exact resistivity [Eq. (1)] compared with the approx-
imation Eq. (7), using the DMFT calculation for n = 0.75, 0.8, 0.85
(bottom to top). Equation (7) is an excellent approximation at all
densities for all temperatures. [See Fig. 3(a) for the corresponding
figure in ECFL.]

so-determined effective Fermi temperature for ECFL is, in
agreement with Ref. [7], given by TFL ∼ .05Z̄D. In the case
of DMFT, we also find TFL ∼ .05Z̄D, where a slightly higher
value of Z̄ results in a slightly higher value of TFL, as compared
to ECFL.

B. Chemical potential and compressibility

The chemical potential in the ECFL theory is found
from the self-consistency condition of the Green’s func-
tion. The compressibility κ = n−2∂n/∂μ is determined by
numerical differentiation. The derivative is computed using
the finite difference formula ∂n/∂μ = [(n + δn) − n]/[μ(n +
δn) − μ(n)] with δn = 0.001. In the DMFT we used larger
δn = 0.01 and we performed two full DMFT runs for fillings
n and n + δn.

We see that the chemical potentials (Fig. 5) match well
apart from a constant shift [39]. The results obtained using

DMFT n=0.75 n=0.8 n=0.85
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FIG. 5. Chemical potentials at n = 0.75, 0.8, 0.85 for ECFL
(symbols) and DMFT (dashed lines). The DMFT results are shifted by
a density-dependent constant. After the shift, the chemical potentials
almost coincide.
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two different impurity solvers (NRG and CT-HYB QMC) in
the DMFT are in agreement, thus the difference is not related
to some technical issue in the NRG but is an actual discrepancy
between DMFT and ECFL.

In our earlier work on the single impurity Anderson
model [40], using a scheme that is an adaptation of that in
Ref. [3], we studied the single impurity energy, which is a close
analog of the chemical potential in the present problem. There
we found that the location of the impurity energy found from
the second order ECFL equations matched very closely the
impurity energy found in the NRG (see Table 1 in Ref. [40]).
In view of that excellent agreement, the current discrepancy on
the absolute scale of the chemical potential between the DMFT
results (also from NRG) and the present second order scheme
is somewhat unexpected. It would appear that the different
hole number sum rule and the cutoff scheme used here relative
to the scheme in Refs. [3,40] influences this variable and needs
to be investigated more closely in the future.

We note that the compressibilities (Fig. 6) are also roughly
similar, and both theories show a suppression relative to the
free fermion theory. The free fermion theory shows a slight
monotonic decrease of the compressibility with T . In the
GCFL and GCSM regimes, the ECFL compressibility shows
an increase with T , followed by a slight fall with T in the
bad metal regime. In Fig. 6(b), we show that in the ECFL
theory Z/κ is a constant within numerical errors (∼±3.4%)
at T = 0.001D. This is not the case in the DMFT, where Z is
proportional to δ, while κ behaves approximately as κ ∝ δ0.2

close to the doping-driven Mott transition [3]. In the GCFL
regime, if we assume that the limit n → 1 follows the almost
localized Fermi liquid theory [24,25], we should expect the
compressibility to scale with Z. This is in accord with the
results of ECFL Fig. 6 panel (b) but not with the DMFT.

C. Bubble susceptibility

The knowledge of the Green’s functions and the nu-
merically determined exact compressibility and magnetic
susceptibility χspin [see below Sec. III F] enable us to check
a popular assumption of retaining only the bubble graphs and
throwing away the vertex correction for these quantities. We
write the charge susceptibility χc = dn/dμ as

χc = 1

βNs

d

dμ

∑
k,ωn,σ

eiωn0+
Gσ (k,iωn)

= − 1

βNs

∑
k,ωn,σ

G2
σ (k,iωn)

{
1 − d

dμ
�σ (k,iωn)

}
(9)

and similarly for χspin by replacing d
dμ

→ d
dB

, where B is the
magnetic field. The vertex corrections thus correspond to the
μ or B derivatives of the self energy. Approximating this by
dropping the derivative of the self energy, we get χc ∼ χspin ∼
χBubble where

χBubble = − 1

βNs

∑
k,ωn,σ

G2
σ (k,iωn). (10)
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FIG. 6. (a) Compressibility κ = n−2∂n/∂μ of ECFL (symbols),
DMFT (dashed lines), and free fermions (dotted lines). The DMFT
results give a systematically higher value of compressibility than the
ECFL theory. (b) Z/κ for the lowest temperature T = 0.001D at
the three densities considered for ECFL (blue) and DMFT (red). The
ECFL result for the compressibility is proportional to the quasiparticle
weight Z, unlike the DMFT result which displays some variation. The
difference in compressibility between the two theories seems related
to the density dependent shift in chemical potentials noted in Fig. 5.

As usual we can convert the sum to a contour integral using
the pole structure of the Fermi function f (ω) and write

χBubble = 2

Ns

∑
k

∫
�

dω

2πi
f (ω)G2(k,ω)

= 2

πNs

∑
k

∫
dωf (ω)�m G2(k,ω + i0+), (11)

where � is a closed contour encircling the imaginary
axis in a counterclockwise fashion, and we rotated the
axis to a pair of lines parallel to the real axis to obtain
the final line. Using the standard definition of the spec-
tral function ρG(k,ω) = − 1

π
�m G(k,ω + i0+) we may write

�m G2(k,ω + i0+) = (−2π )�e G(k,ω) ρG(k,ω) to express
χBubble = − 4

Ns

∑
k

∫
dωf (ω)�e G(k,ω)ρG(k,ω). In the limit
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FIG. 7. The momentum distribution curves at three densities n =
.75,.8,.85 (top to bottom at ε = −1) at T = .004 D [panel (a)] and
T = .02 D [panel (b)]. The ECFL curves are solid symbols and the
DMFT curves are dashed lines.

d → ∞ the Dyson self energy is independent of k, and
therefore we can write �m G2(ε,ω + i0+) = �m d

dε
G(ε,ω +

i0+) = −π d
dε

ρG(ε,ω), where we exchanged the two op-
erations in the last line. Using the definition of the sin-
gle particle momentum distribution function nk → n(ε) ≡∫

dωf (ω)ρG(ε,ω) we can perform the ω integration in Eq. (11)
and get a compact relation valid in high dimensions:

χBubble = −2
∫

dε D(ε)
d

dε
n(ε). (12)

Here D(ε) = 2
πD

√
1 − ε2/D2 is the band density of states per

site per spin, and D is the half bandwidth. For noninteracting
electrons the function n(ε) is a constant with a unit jump at εF ,
and we recover the standard result χ0 = 2D(εF ).

In the correlated problem, the jump at the Fermi energy is
Zk by Migdal’s theorem, and so its contribution to χBubble is Zk .
The background also contributes to the integral in Eq. (12), and
it is important to understand its behavior as n → 1. In Fig. 7
we display the momentum distribution at the three densities
considered at two temperatures. We note that the entire
variation of the monotonic function n(ε) is on the scale of δ;
it settles down to a flat function n(ε) = 0.5 at n = 1− and for
small departures from half filling, the occupied (unoccupied)
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FIG. 8. The charge susceptibilities χc = dn/dμ, which are re-
lated to compressibility κ as χc = n2κ . The numerically exact values
versus bubble estimates [Eq. (12)] in panel (a) DMFT (full and dashed
lines) and in panel (b) from ECFL (empty diamonds and solid circles).

region is enhanced (depleted) by an area that is proportional
to δ = 1 − n. Thus we see that as n → 1, the background
contribution is at most as large as δ, and thus χBubble is a
suitably weighted average of δ and Z. In the density regimes
we are considering, the δ variation of Z is close to δ1.39 rather
than δ (see discussion in Ref. [3]), and hence this balance can
only be determined by a numerical evaluation. From Eq. (12)
we can evaluate χBubble, and the results are shown from both
theories at the three densities δ = .25,.2,.15 in Fig. 8. Within
ECFL it appears that χBubble is dominated by the Migdal jump
contribution; the spacing between the three relatively constant
lines increases at lower δ. Within DMFT the situation appears
to be reversed and χBubble seems to scale with δ. In Fig. 6 we see
that the DMFT results for Z/κ have a distinct positive slope
relative to the ECFL results, and this is consistent with the
above discussed differences in the computed χBubble as well.

D. Self-energy and local density of states

In this section we study the imaginary part of the
self energy ρ�(ω) = − 1

π
�m�(ω) and the (local) spectral
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FIG. 9. Single particle decay rates, i.e., the spectral functions of
self-energy [ρ�(ω) = −π−1�m�(ω)] of ECFL (symbols) and DMFT
(dashed lines) for a range of temperatures.

function integrated over the band energies ρ loc
G (ω) =

− 1
π
�m

∫
dε D(ε) G(ε,ω). The results of the two theories,

including the magnitudes and their variation, are very close
at low energies. The ECFL self-energy misses a maximum in
ρ�(ω) found in DMFT between ω ∼ −0.1D and ω ∼ −0.2D,
see Fig. 9. This feature was already noted in Ref. [3] and it
is expected to influence the results of various quantities, such
as the optical conductivity and dynamical Hall constant, but

T=0.002 D
n=0.75

n=0.8

n=0.85

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0.0
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0.4

0.5

0.6

0.7

/D

Glo
c (

)

FIG. 10. Local density of states ρ local
G (ε) of ECFL (symbols) and

DMFT (dashed lines) at T = 0.002D.

only at a fairly large energy. The imaginary part of the self
energy in both theories shows a significant ω3 type (i.e., odd
in frequency) correction to the simple-minded expectation of
a ω2 behavior from Fermi liquid theory. This type of a skew
has been argued in Ref. [41] to be responsible for the unusual
and distinctive spectral functions in real materials such as the
cuprates.

The local spectral functions of the two theories, shown in
Fig. 10, are similar. They exhibit a sharpening of the maximum
as n increases. Let us note that this object is relevant for
angle integrated photoemission studies as well as STM studies,
where one would also have to correct for the one electron
density of states showing structure beyond that in the present
theory.

E. Entropy and heat capacity

The heat capacity is computed in the ECFL theory
by numerically differentiating the internal energy as CV =
∂EK/∂T on a fine T grid. From its numerical integration∫ T

0 dT ′CV (T ′)/T ′ we find the entropy. A similar procedure is
used in the DMFT: The kinetic energies were computed on
an equally spaced temperature grid (step size �T = 10−3D),
numerically differentiated, smoothed using a Gaussian filter to
obtain the heat capacity CV , then interpolated using second-
order polynomials, and finally integrated to obtain the entropy.

The heat capacity CV is displayed in Fig. 11(a). We note
that CV has a Schottky peak near T ∼ TFL which becomes
sharper as the density increases. At lower densities (n = 0.7,
0.75), a linear-T behavior is resolved, as we expect for a
Fermi liquid. In Fig. 11(b) we display CV /T , from which
we see that for densities closer to half-filling (n = 0.8,0.85),
the linear behavior of heat capacity is not clearly resolved due
to the small TFL scale, and also due to increasing numerical
uncertainties near half filling. Consequently, we find CV /T

appears to be growing as T decreases, instead of saturating.
In Fig. 11(c) we show the product of the heat-capacity slope
γ = CV (T )/T and the quasiparticle residue Z at a low T

corresponding to the GCFL regime. This product is expected
to be a constant for localized Fermi liquids [24]. At δ = 0.15,
we see however some variation in both ECFL and DMFT
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FIG. 11. (a) Specific heat computed from the kinetic energy
by differentiation as CV = ∂EK/∂T for ECFL (symbols), DMFT
(dashed lines), and free fermions (dotted lines). For n = 0.8 and
n = 0.85 the heat capacity shows a gentle maximum at a characteristic
T . (b) The ratio CV /T versus T of ECFL (symbols) and DMFT
(dashed lines). Taking the ratio with T wipes out the maximum seen
in (a). (c) γ × Z at T = 0.001D.

results. For higher hole densities δ = 0.2,0.25, it is indeed
almost a constant.

In Fig. 12 we plot the entropy of the two theories, which
give very similar results, and that of the free Fermi gas

n=0.75

n=0.8

n=0.85

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

T/D

S
(k

B
/N

s)

FIG. 12. The entropy versus T computed as
∫ T

0 dT ′CV (T ′)/T ′

for ECFL (symbols), DMFT (dashed lines), and free fermions (dotted
lines).

with a much lower entropy recovery at these temperatures.
It is revealing to compare the heat capacity curve at n =
0.8 in Fig. 11(a), with the resistivity results in Fig. 2 at
the same densities. Both theories show a broad maximum
in the heat capacity near the corresponding Fermi liquid
temperature TFL(δ); this is the temperature where the GCFL
quadratic behavior of resistivity gives way to a linear be-
havior of the GCSM. At this temperature the entropy per
site [see Fig. 12] is ∼0.2 kB , compared to the high T

(T = ∞) value of 1.0119 kB , obtained from Sideal ≡ ST =∞ =
kB{n log 2 − n log n − (1 − n) log(1 − n)}. This corresponds
to about 20% release of the entropy. For comparison, the Fermi
gas on the Bethe lattice releases much less, about 1–2% entropy
at a comparable T/D. At lower particle densities n = 0.8,0.75
we again see that a ∼15–20% release of the entropy occurs at
the corresponding Fermi liquid temperature TFL(δ), however
the heat capacity has a more rounded behavior.

In order to explore this further, in Fig. 13 we display the
resistivity and the entropy recovery on the same T scale. We
may thus take as a rule of thumb that at TFL, the GCFL entropy
release is ∼15–20% relative to the maximum. This implies a
substantial loss of coherence relative to the Fermi gas, i.e., the
disordering of either the configurational (i.e., charge) degrees

TFL
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FIG. 13. Resistivity (blue circle), specific heat (light blue square),
and entropy (red triangle) as percentage of the ideal entropy at infinite
temperature Sideal. The (Schottky) peak in the heat capacity is close
to TFL, the onset point of the linear-T resistivity, or the end of the
crossover region.
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FIG. 14. Magnetic susceptibility (DMFT results). We note that
the Stoner enhancement grows as δ → 0 and its T dependence is
Pauli like but with a somewhat enhanced T dependence at higher n.
The crossover to linear resistivity occurs (see Fig. 2) at fairly low
T � .005D at these densities but has no reflection on the variation
of χspin. We may thus infer that spin disordering is not relevant to the
linear resistivity seen here.

of freedom or to the spins. Below we study the magnetic
susceptibility to explore which of these is responsible. We find
that the spins are largely unaffected when we go through TFL,
thereby implicating the charge degrees of freedom.

F. Magnetic susceptibility

The uniform magnetic susceptibility close to the Mott
transition, n � 0.75, is one of the more difficult variables to
compute reliably by any technique, since it is highly enhanced
by Stoner factors χspin/χ

0
spin ∼ 10. In the ECFL theory we

found the numerical precision required for computing the
susceptibility hard to achieve with the scheme outlined in
Ref. [7]. Although the local spectral functions for either
spin are confined to a compact region in frequency, it is
their difference that is needed for the susceptibility. This
difference is numerically very small and smeared over a
large frequency range making it very difficult to control. The
magnetic susceptibility χ is a sensitive variable also within
the DMFT using the NRG as the impurity solver, in particular
away from half filling at low temperatures, thus it is seldom
studied using this approach (see, however Refs. [11,26] for
some very early DMFT results, and Ref. [27] for a more recent
study using the DMFT(NRG) of the half-filled Hubbard model
in magnetic field at T = 0). With some effort we have found it
possible to estimate its temperature dependence. We used the
method of finite field [2,42] with H = 10−4D � T , which is
small enough for the system to remain well inside the linear
response regime but sufficiently large to be little affected by
numerical noise. As a further test, we redid some calculations
for H = 10−3D, finding good consistency of the results.

In Fig. 14 we present the DMFT Stoner enhancement of
the susceptibility χspin/χ

0
spin as a function of T . Here the spin

susceptibility is denoted by χspin and for the noninteracting
band case it is given by χ0

spin = 2μ2
BD(εF ), where D is the

band density of states per spin per site defined earlier. The scale
of the Stoner enhancement is rather large, ∼10. We find that
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FIG. 15. (a) Thermopower of ECFL (symbols) and DMFT
(dashed lines). Both amplitudes and temperature derivatives are
similar for T � .005 but depart at higher T. (b) Electronic thermal
resistivity κ−1

e of ECFL (symbols) and DMFT (dashed lines).

the T → 0 value is roughly consistent with 1/Z, as expected
for an almost localized Fermi liquid [24].

It is interesting that the Stoner factor and hence χspin is
Pauli-like in the temperature range studied here, i.e., the GCFL
and the GCSM regimes. It does not reflect the change in the
resistivity behavior from quadratic to linear. Thus the magnetic
contribution to the entropy change in Fig. 11 is very small, and
we must infer that the GCSM regime continues to have a
quenched spin entropy, as in the Fermi liquid. It would appear,
by inference, that the entropy released at TFL is charge related
and the crossover from the Fermi liquid to the GCSM may be
viewed as partial charge disordering. This is to be contrasted
to the crossover from GCSM to the higher temperature bad
metal regime, where the spin degrees of freedom do become
partially unscreened [43,44].

G. Thermoelectric transport

For completeness we present the results for the ther-
mopower St , the electronic thermal conductivity κe, and the
Lorenz number L, as well as the thermoelectric figure of merit
in Figs. 15 and 16. We record the expressions following from
standard transport theory [45]; the thermopower St and elec-
tronic thermal conductivity κe are expressed in terms of three
Onsager transport coefficients L11, L12 = L21, and L22 as
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FIG. 16. (a) Lorenz number of ECFL (symbols) and DMFT
(dashed lines). The Lorenz number saturates to a constant (�2.1)
which is typically expected for a Fermi liquid at low temperatures.
(b) Figure of merit for ECFL (symbols) and DMFT (dashed lines).
The low values of ZT found here are typical of normal metals.

follows:

σxx = e2L11, (13)

St = − kB

|e|T
L12

L11
, (14)

κe = k2
B

T

(
L22 − L2

12

L11

)
. (15)

In infinite dimensions, these can be found in a straightforward
way from the spectral functions due to vanishing vertex
corrections:

Lij = σ0

e2

∫
dω(−f ′(ω))ωi+j−2

∫
dε �xx(ε)A2(ω,ε). (16)

The Lorenz number is

L = e2

k2
B

κe

σxxT
, (17)

and the electronic thermoelectric figure of merit

ZT = T σxxS
2
t /κe (18)

In the usual Fermi liquid theory, the electronic thermal
conductivity κe ∼ T −1 and the thermopower St ∼ γ T . The

classic Lorenz number for a gas of particles with constant
relaxation time is L0 = π2/3 when we set kB = |e| = 1, while
for Fermi liquid one expects LFL = L0/1.54 ≈ 2.13 [46].
In previous DMFT studies [45,47–49], thermal transport
coefficients were studied focusing on the very high temperature
regime of the bad metals. While our results qualitatively
agree with the previous studies, the crossover of thermal
transport coefficients from GCFL to GCSM in the low-T
regime (relative to the very high-T bad metal regime) are
resolved. Both the thermopower and thermal resistivity of
ECFL change slope near TFL. In DMFT calculation, only the
thermal resistivity shows similar crossover behavior, while the
thermopower seems to be insensitive to the crossover from
GCFL to GCSM. The Lorenz number of both ECFL and
DMFT converges to L � 2.1 in the low-T limit, as expected
for a Fermi-liquid ground state. The low values of ZT , shown
in Fig. 16(b), are typical of normal metals.

IV. CONCLUSIONS

This work achieves two goals. On one hand, we explored
the low-temperature transport regimes of lattice fermions with
the constraint of no double occupancy (Gutzwiller projection)
in the limit of infinite dimensions. We focus on the temperature
range where the Fermi-liquid quadratic resistivity gives way to
the first T linear regime that we dubbed Gutzwiller correlated
strange metal; this crossover occurs on the temperature scale
which is much lower compared with the bandwidth (and
the Brinkman-Rice scale) but which actually corresponds to
the experimentally most relevant range of order 100 K. On
the other hand, this work had a further methodological goal
of comparing the results for a number of transport, spec-
troscopic, and thermodynamic quantities obtained using the
mostly analytical extremely correlated Fermi liquid (ECFL)
theory and the accurate numerical results from the dynamical
mean field theory (DMFT) approach based on the numerical
renormalization group as the impurity solver. We found that
at the crossover temperature scale both techniques indicate a
change of behavior in most of the quantities we investigated.
The two methods have generally good agreement, which
improves upon lowering either the temperature or the density.

The origin of the crossover in the resistivity has been tracked
down to the temperature dependence of −�m�(0,T ), the
imaginary part of the self-energy on the Fermi surface, which
starts to deviate from its low-temperature asymptotic behavior
on the scale TFL (Fermi-liquid temperature). This low-energy
scale is produced by purely local Gutzwiller correlation
effects, i.e., it is a direct consequence of the constraint of
no double occupancy of the lattice sites. We managed to
show that ρ(T ) ∝ −�m�(0,T ) [Eq. (7)], which accounts well
for the ρ(T ) dependence in the (GCFL)-Fermi-liquid and
(GCSM)-strange metal regimes. As a result, we are able to
explain the temperature dependence of the resistivity in terms
of the temperature dependence of the imaginary part of the
self-energy on the Fermi surface.

The charge compressibility of the DMFT theory at infinite
U is seen to differ somewhat from that of the ECFL and also
from the almost localized Fermi liquid. Developments in ECFL
are underway in order to resolve the difference from DMFT.
The compressibility shows a kink on the scale of TFL and the
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heat capacity has a weak peak. The magnetic susceptibility,
however, shows no change across this crossover. The crossover
hence seems to be related to the charge degrees of freedom,
while the spin entropy is quenched in both Fermi liquid and
strange metal regimes. It thus seems that the GCSM regime
has a highly unusual composition, with some disordering of
the charges, presumably in anticipation of the incipient Mott
insulating state, without the participation of the spins.

In a following paper, Ref. [50], we present results for the
dynamical Hall constant and Hall angle indicating that the
two-relaxation-time behavior in transport properties observed
in a number of cuprates emerges upon entering the GCSM
regime. Finally we note a recent paper, Ref. [51], where the
results of a two-dimensional version of the equations studied
here are presented.
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