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Spin-1 two-impurity Kondo problem on a lattice
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We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on a square lattice
using an exact canonical transformation to map the problem onto an effective one-dimensional system that can
be numerically solved using the density matrix renormalization group method. We provide a simple intuitive
picture and identify the different regimes, depending on the distance between the two impurities, Kondo coupling
JK , longitudinal anisotropy D, and transverse anisotropy E. In the isotropic case, two impurities on opposite
(the same) sublattices have a singlet (triplet) ground state. However, the energy difference between the triplet
ground state and the singlet excited state is very small and we expect an effectively fourfold-degenerate ground
state, i.e., two decoupled impurities. For large enough JK the impurities are practically uncorrelated forming
two independent underscreened states with the conduction electrons, a clear nonperturbative effect. When the
impurities are entangled in an RKKY-like state, Kondo correlations persist and the two effects coexist: the
impurities are underscreened, and the dangling spin-1/2 degrees of freedom are responsible for the interimpurity
entanglement. We analyze the effects of magnetic anisotropy in the development of quasiclassical correlations.
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I. INTRODUCTION

Magnetic adatoms can be used to tailor the properties of
substrates [1–3] and to build nanostructures that could pave
the way to magnetic devices with novel functionality including
qubits and magnetic memories [4–10]. Exciting pioneering
examples include quantum corrals formed by Fe atoms on
Cu(111) [11], quantum wires on Au(111) surfaces [12], and
more recently, magnetic nanostructures [13], one-dimensional
atomic chains [14,15], and atomic dimers [16]. Depending on
their strength and directionality [17–20], quantum-mechanical
effects could lead to the self-assembly of one-dimensional Co
chains and Fe superlattices [21,22]. These magnetic nanostruc-
tures can also serve as a platform to simulate magnetic quantum
matter in the same spirit as cold atomic systems [22–25].

This research field is rapidly developing, but creating
new technologies based on magnetic nanostructures requires
a deeper knowledge of the interplay between the different
degrees of freedom and energy scales in the problem. These
vary widely depending on the atomic species and the substrates.
Some systems have particularly distinguished properties. For
instance, scanning tunneling microscopy (STM) studies found
large magnetic anisotropies for single manganese and iron
atoms on copper nitride [26]. In addition, the anisotropy can
be controlled through a coupling of the spin with a conductive
electrode [27]. More recently, a holmium atom on a platinum
(111) surface was found to have a very large total angular
momentum of J = 8 [7].

Most of the theoretical understanding relies on the theory
of the single-impurity problem [28] and indirect exchange
[Ruderman-Kittel-Kasuya-Yosida (RKKY)] [29–32]. The lat-
ter, in particular, is based on second-order perturbation theory
and leaves aside many important puzzles that arise when

correlations are taken into account nonperturbatively. For in-
stance, a remarkable result in early numerical renormalization
group (NRG) studies of the two-impurity problem [33–35]
with spins-1/2 indicated the existence of a non-Fermi-liquid
(NFL) fixed point. A different NFL fixed point was found
in the three-impurity problem in the presence of magnetic
frustration [36].

The two-impurity problem has been theoretically studied
using a range of techniques, both analytical and numerical.
Introduced in 1981, it was first analyzed using perturbative
scaling ideas [37]. Our understanding continued to evolve
through the application of new methods [38–50] and the
development of state of the art experimental setups [16,51–53].
In most studies, the impurities are described either by the
spin- 1

2 Kondo model or single-orbital Anderson model [28].
However, typical experiments with adatoms on substrates
involve transition-metal atoms with high spin such as iron,
cobalt, or manganese.

The minimal model to tackle this problem is the two-
impurity Kondo Hamiltonian:

H = Hband + JK (�S1 · �sr1 + �S2 · �sr2 ), (1)

where Hband is the lattice Hamiltonian for noninteracting
electrons, �Si are the quantum-mechanical impurity spin op-
erators, and �sri

represents the conduction electron’s spin at the
impurity’s coordinate ri , for impurities i = 1,2.

In this work we focus on spin-1 impurities. A pointlike spin-
1 impurity coupled to a single conduction electron channel
will be “underscreened”; i.e., the ground state will have a
spin-1/2 residual moment [54,55]. In other words, a single
electron channel can screen at most a one-half unit of spin. This
problem has been extensively studied and was exactly solved
with the Bethe ansatz for the case of a linear dispersion [56–59],
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and numerically using the numerical renormalization group
(NRG) [60–64] for a generic situation. The underscreened
nature of the ground state with twofold degeneracy leads to
singular thermodynamic behavior characterized by a singular-
Fermi-liquid fixed point [62,65,66]. However, most physical
examples have a natural magnetic anisotropy that arises from
the local spin-orbit coupling that can be quite large [67–69].
Anisotropy is often modeled by adding a term:

HA = DS2
z + E

(
S2

x − S2
y

)
. (2)

Such interactions emerge as an effective spin Hamiltonian
of an orbitally degenerate level from the combination of
spin-orbit coupling and crystal-field splitting according to
the point-group symmetry. For S = 1, the physics strongly
depends on the longitudinal anisotropy D, since it splits the
threefold degeneracy of the free moment into a nondegenerate
state (Sz = 0) and a pair of states (Sz = ±1). The transverse
anisotropy term E is smaller than D, and zero if the point group
has a CN axis with n � 3. When nonzero, it splits the Sz = ±1
pair. The transverse anisotropy is particularly important in
the context of spin-state lifetimes and decoherence [70]. The
magnetic anisotropy hence determines the effective impurity
degrees of freedom and the possible physical mechanisms
for their quenching at low temperatures. For example, STM
experiments with cobalt atoms (S = 3

2 ) on Cu2N find the
Kondo effect even in the presence of a hard axis (positive D)
anisotropy [17]. The Kondo effect is observed if the ground
state levels are degenerate and connected by �m = 1. This
occurs only for half-integer spin S � 3

2 when the anisotropy
D is positive. The Kondo effect is absent for iron (S = 2)
and manganese (S = 5

2 ) which both have negative anisotropy
[17,26].

The effects of anisotropy in the single-impurity problem are
discussed in detail in Ref. [64] using the NRG and a flat density
of states. Although this problem exhibits universal physics that
is essentially independent of the band structure [59,71–75], the
lattice plays an important role in mediating the interimpurity
coupling and leads to the competition between different effects
[77–80]. The complexity in the two-impurity case arises
from competing energy scales between the single-impurity
screening and the RKKY physics. In addition, for high spin the
magnetic anisotropy also plays an important role selecting the
relevant degrees of freedom that participate in these screening
processes. In order to study this problem on a specific lattice,
we use a recently developed computational technique [78]
that allows us to exactly solve this problem on large lattices
with the aid of the density matrix renormalization group
method (DMRG) [81–83]. Our results are exact and provide a
deeper understanding of the physics beyond perturbative ideas,
accounting for all the many-body effects.

One should mention that the NRG has been applied to the
two-impurity Kondo problem in the past. Some early works
can be found in Refs. [45,84,85], as well as more recently in
Refs. [79,86]. These methods are based on the transformation
to the even/odd basis of the hybridization matrix, making it
diagonal, and a discretization of the two frequency-dependent
couplings. The lattice details can, in principle, be fully de-
scribed through the frequency dependence of these functions
which, unfortunately, is highly nontrivial except in the very
short distance and long distance limits. In fact, they are strongly

oscillatory for intermediate distances of prime interest. Most
works hence performed additional approximations; thus the
detailed information about the lattice was actually lost. One can
proceed without any approximation, provided that additional
measures are taken to reduce the discretization artifacts (e.g., if
z-averaging over a large number of interleaved discretization
meshes is performed). In practice, the calculations are thus
limited to distances of order 3–4 sites, while it is very difficult
to accurately capture the asymptotic decay of the RKKY
superexchange on somewhat longer length scales.

Therefore, the advantage of our approach consists in being
able to robustly describe the range of order 10–20 sites. The
limitation is indeed that the lowest energy scale included in
the problem is constrained by the finite-size error of order 1/L.
This is ultimately the reason for choosing relatively high values
of the Kondo exchange coupling JK : they are chosen such that
the spatial extent of the Kondo cloud does not exceed L (and
correspondingly that the Kondo temperature TK is larger than
the finite-size error).

The paper is organized as follows: In Sec. II we present
a qualitative overview of the problem from the perspective
of the strong-coupling limit. This provides valuable intuition
that will help us interpret the numerical results. Section III
describes the exact mapping of the model onto an effective
one-dimensional problem amenable to DMRG calculations.
In Sec. IV we present our results for both the isotropic and
the anisotropic cases. We finally close with a summary and
conclusions.

II. QUALITATIVE PICTURE

A. Single spin-1 impurity

1. Underscreening

We first propose an intuitive picture to understand the essen-
tial physics of the underscreened Kondo problem, focusing on
the S = 1 single-impurity case, and use a very simple effective
model for illustrative purposes. It has been demonstrated in
Ref. [87] that in the Kondo problem, only one conduction
electron is responsible for the screening. This picture is quite
universal. In the weak-coupling limit, one can imagine that this
electron is located at the Fermi level [77], while in the strong-
coupling limit, it corresponds to the localized orbital directly
in contact with the impurity spin. In either case, the remaining
conduction electrons form a completely disentangled Fermi
sea and do not play a role in the physics. Therefore, this can be
reduced to a problem of an impurity spin (partially) screened
by a single conduction electron. In these terms, the T = 0
picture for a spin-1/2 impurity is of a singlet ground state
between both spins while for a spin-1 impurity, one needs to
also account for the extra degrees of freedom and magnetic
anisotropy. We refrain from generalizing these ideas to finite
temperature, where the many-body screening mechanisms are
more complex. We consider the impurity and conduction spins
interacting via a Heisenberg exchange JK , and include the
anisotropy as in Eq. (2); see Fig. 1(a). Defining states |↑〉,|↓〉
for the conduction spin and |+〉,|0〉,|−〉 for the impurity spin,
one can readily obtain the ground state as a function of D (for
now E = 0). The Hamiltonian can be diagonalized in blocks,
and we focus on the subspaces with total Sz = ms = ±1/2.
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FIG. 1. Toy model representing the strong-coupling limit. Large
red arrows represent S = 1 impurity spins, while small blue arrows
correspond to conduction-band electron spins. (a) A single conduction
spin can only partially screen the impurity. (b) A second conduction
spin interacts with the first through an antiferromagnetic exchange J .
The impurity spin and the second spin favor ferromagnetic alignment.

The 2 × 2 Hamiltonian matrix is

H (ms = ±1/2) =
(

0 JK√
2

JK√
2

− JK

2 + D

)
. (3)

For D = 0 we find two degenerate ground states:

|ms = 1/2〉 ≡ a |0 ↑〉 − b |+↓〉 ,

|ms = −1/2〉 ≡ a |0 ↓〉 − b |−↑〉 , (4)

with a = √
1/3 and b = √

2/3. This degeneracy is a man-
ifestation of underscreening: if one assumes that the spin-
1 is actually composed of two spins-1/2 (see Fig. 2), the
conduction electron will screen only one of them. This leaves a
“dangling” spin-1/2 that can point in either direction. To make
this analogy more explicit, the S = 1 states are written in terms
of two S = 1/2 spins projected onto the S = 1 manifold:

|+〉 ≡ |↑↑〉,
|−〉 ≡ |↓↓〉,
|0〉 ≡ 1√

2
(|↑↓〉 + |↓↑〉). (5)

We can readily rewrite the eigenstate |ms = 1/2〉 as

|ms = 1/2〉 = 1√
6

(|↑↓〉|↑〉 − |↑↑〉|↓〉)

+ 1√
6

(|↓↑〉|↑〉 − |↑↑〉|↓〉). (6)

The two terms in the above sum correspond to two singlets: one
between the conduction spin and the first spin, and the other
between the conduction spin and the second spin. This can be
interpreted as a resonating valence bond (RVB) state with an

FIG. 2. Graphical representation of three basis states for a single
spin S = 1 in terms of two spins S = 1/2. The |0〉 state is a triplet
with total Sz = 0, while the two other states are fully polarized.

FIG. 3. Valence bond representation of the single site “Under-
screened” spin-doublet state |ms = 1/2〉 with one conduction-band
electron spin, and of the possible ground states after adding a second
conduction spin: “Screened” singlet, and Sz = 0, ± 1 triplet states.
The spin-1 impurity is represented as two spins S = 1/2. The dangling
unscreened spins are shown explicitly and the thick blue (red) lines
represent singlets (triplets) between spins-1/2.

extra spin always pointing up (see |Underscreened〉 in Fig. 3 for
a graphical representation of this state). It is easy to show that
the entanglement entropy for the impurity is S = − 1

3 log ( 1
3 ) −

2
3 log 2

3 . These doublet states have also been discussed in the
context of quantum dots [88–90].

A similar analysis applies to the |ms = −1/2〉 state. The
degeneracy of the |ms = ±1/2〉 states leads to the so-called
singular Fermi liquid behavior that emerges when trying to
restore the time-reversal symmetry [65]. This can be broken
“by hand” by choosing a particular value of Sz. However,
the symmetrization of the ground state implies that the self-
energy of the problem has to be obtained from two distinct
self-energies [66], yielding peculiar low-temperature effects.
As soon as an infinitesimal magnetic field is applied, the system
picks a unique ground state, and Fermi liquid behavior is
restored.

The effect of the longitudinal anisotropy D is to change
the character of the ground states to more “classical” or
“Ising-like” states. D � JK implies a � b, and the impurity
spin has zero total moment. On the other hand, D 	 −JK

leads to b � a, and the impurity spin is fully polarized in
either direction. In both limits, the impurity and the conduction
spins are disentangled and the screening is lost, but the twofold
degeneracy of the ground state persists.

We now analyze the effects of a transverse anisotropy
parametrized by E in Eq. (2). This term can be rewritten as

VE = E
2 [(S+)2 + (S−)2]. (7)

In an isolated quantum spin, this perturbation would mix
the m = ±1 states. However, this is no longer true in our
“underscreened Kondo” problem. Let us first consider the two
degenerate ground states in Eq. (4), and apply perturbation
theory. The first contribution comes from the second-order
correction. It is diagonal and has the same sign for both
ms states. This corresponds merely to a constant shift in
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the energy levels with no splitting. Another way to see this
is by applying VE to the states directly: VE|ms = 1/2〉 =
−b/2| − ↓〉 and VE|ms = −1/2〉 = −b/2| + ↑〉. Therefore,
VE acts on separate subspaces and does not mix them. Hence,
we conclude that the transverse anisotropy does not modify the
general picture described above. The general form of the two
degenerate states will now be

|1〉 = α|0 ↑〉 + β| + ↓〉 + γ | − ↓〉,
|2〉 = α|0 ↓〉 + β| − ↑〉 + γ | + ↑〉. (8)

Clearly, for E = 0 we obtain α = a, β = b, γ = 0 and we
recover the original |ms〉 states.

2. Residual interactions

We should point out that strictly speaking the previous
discussion does not correspond to the strong-coupling limit
of the problem. This is studied in Ref. [64] and leads to XXZ
anisotropic exchange constants. In addition, one has to account
for the rapidly growing anisotropy (in the renormalization
group sense) and a residual ferromagnetic coupling between
the magnetic impurity and the conduction electrons. We follow
Nozières and Blandin’s simple arguments [55]: an additional
electron would want to increase its kinetic energy by hopping
onto the site connected to the impurity. Due to Pauli’s exclusion
principle, it could only do that if it had the opposite spin orien-
tation, which means the same spin orientation as the impurity
spin. Using conventional perturbation theory arguments, this
translates into an effective residual ferromagnetic coupling
between the impurity spin and the remaining conduction spins.

In order to account for this additional effect, we need to
assume a residual interaction between the “Underscreened”
states |ms = ±1/2〉 defined in Eq. (4) and the rest of the
Fermi sea. To make these ideas more concrete, we extend
the toy model with a second conduction electron spin coupled
to the first by an antiferromagnetic exchange J , as depicted
in Fig. 1(b). We can anticipate that this interaction will
counteract JK , suppressing the magnitude of the magnetic
moment of the impurity. More explicitly, we define a new
basis: |0↑↓〉,| + ↓↓〉,|0↓↑〉,| − ↑↑〉. In this representation,
the Hamiltonian is

H =

⎛
⎜⎜⎜⎝

− J
4

√
2

2 JK
J
2 0√

2
2 JK − JK

2 + J
4 + D 0 0

J
2 0 −J/4

√
2

2 JK

0 0
√

2
2 JK − JK

2 + J
4 + D

⎞
⎟⎟⎟⎠.

(9)

This matrix can be diagonalized to estimate the screening of
the impurity moment 〈Sz

imp〉. In Fig. 4(a) we show results for a
fixed value J = 0.2 and a range of magnetic anisotropies D as
a function of JK . For JK � J,D �= 0 the quantum fluctuations
are greatly suppressed. For JK � J , the values tend toward the
value Sz

imp = 2/3, as expected for the |ms = ±1/2〉 states.

3. Magnetic anisotropy effects

It is instructive to observe the results for the anisotropic
case in Fig. 4 more closely. For D > 0, J = 0.2, they look
very similar to the isotropic case. In fact, finite D also tends

FIG. 4. (a) Impurity magnetic moment 〈Sz
imp〉 for the system of a

single S = 1 impurity connected to a spin-1/2 via JK , which in turn
is connected to a second spin-1/2 via J . We consider the ground state
in the Sz = 0 sector. The antiferromagnetic interaction between the
two “conduction” spins competes with the “Kondo” interaction. The
effect of J is to induce a residual ferromagnetic coupling between
the second conduction spin and the impurity. This coupling tends to
reduce the impurity magnetic moment. In the strong-coupling limit
〈Sz

imp〉 → 2/3. (b) Entanglement entropy between the impurity spin
and the two conduction spins. Even though 〈Sz

imp〉 tends toward the
same value in the strong-coupling limit, the entanglement entropy
clearly distinguishes two different regimes: for finite J the impurity
spin is always fully screened, with an asymptotic value S → log 3.
Without J , the impurity is always underscreened, with the entropy
converging to S → − 1

3 log ( 1
3 ) − 2

3 log 2
3 .

to force the impurity into the zero magnetization state (for
small JK ), enhancing the effects of J and making the residual
ferromagnetism more effective. On the other hand, D < 0
tends to polarize the spin into the Sz

imp = 1 orientation. This
time the Kondo interaction has to compete against both the
anisotropy and the J term, to reach the strong interaction value
for large JK .

For small J , one can use first-order degenerate perturbation
theory to show that the ground state will be fully screened,
i.e., |g.s.〉 = 1/

√
2(|ms = 1/2, ↓〉 − |ms = −1/2, ↑〉). Here,

the extra spin is entangled with the dangling spin into a singlet,
shown as the “Screened” state in Fig. 3. We point out that the
actual ground state for D 	 0 is in the Sz = ±1 sectors, with
the impurity pointing in either direction, disentangled from the
conduction spins, as illustrated by the states |S = 1; Sz = ±1〉
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FIG. 5. Illustration of the RKKY state obtained for two impurities
and two “conduction spins.” Each impurity is coupled to a single
conduction electron via JK , and the conduction electrons are cou-
pled to each other via antiferromagnetic J . The spin-1 impurity is
represented as two spins S = 1/2. The dangling unscreened spins
are shown explicitly and the thick lines represent singlets between
spins-1/2. In the ferromagnetic case, the red dimers would be replaced
by triplets.

in Fig. 3. These observations will become important in the
analysis of the full problem.

We now introduce a transverse anisotropy E through the
term (7). If we ignore J , the net effect of VE is to mix
|ms = 1/2, ↓〉 with | − ↓〉 and |ms = −1/2, ↑〉 with | + ↑〉.
The coupling J to the third spin will yield a symmetric and
antisymmetric linear combination of the two. The states | −
↓↓〉,| + ↑↑〉 have unperturbed diagonal energies JK/2 + D.
If we assume E < JK and D � E, this tunneling barrier is
very high and the corrections to the ground state very small.
Therefore, once again we conclude that this term does not
change the general picture in this parameter regime.

B. Two impurities

In order to provide intuition on the two-impurity problem,
we consider two single-impurity “Underscreened” states de-
fined in Eq. (4), and introduce a Heisenberg exchange between
the conduction spins. This coupling can be either ferromagnetic
or antiferromagnetic. Let us fix the total spin projection to
Sz = 0, in which case we have two degenerate states in the
absence of exchange: |1/2,−1/2〉 and |−1/2,1/2〉, where the
labels refer to the value of ms . A simple analysis in terms of
degenerate perturbation theory yields an effective Hamiltonian
in the form of a 2 × 2 matrix that can be readily solved to yield
that the ground state can be a singlet or a triplet, depending on
the sign of the interaction:

|g.s.〉 = 1√
2

(|1/2,−1/2〉 ± |−1/2,1/2〉). (10)

If we once again represent the spin-1 in terms of two spins-1/2,
one can find that for the isotropic case, this corresponds to an
equal superposition of all possible dimer coverings between
the dangling spins, as shown in Fig. 5. This indicates that
the RKKY state can be interpreted as the unscreened spin
becoming maximally entangled. The entanglement entropy
between an impurity spin an the rest of the system in this case
is SRKKY = log 3 and the impurity spin is fully screened.

From the ground state expression (10) we find that the spin-
spin correlations are simply〈

g.s.
∣∣Sx

1 Sx
2 + S

y

1 S
y

2

∣∣g.s.
〉 = ±4a2b2,〈

g.s.
∣∣Sz

1S
z
2

∣∣g.s.
〉 = −b4. (11)

In the isotropic case these values are ±8/9 and 4/9, respec-
tively. In the anisotropic case upon the inclusion of a finite value
of D, the |ms〉 wave functions will change in character from
more Ising-like for D < 0, with b > a in (4), to nonmagnetic
with a > b for D > 0. Remarkably, the transverse correlations
will reach a maximum value for D = JK/2, since for this
case a = b = 1/

√
2, and only then they will start decreasing

monotonically with increasing D.
We now comment on the effects of the transverse anisotropy.

Assuming that J is the smallest energy scale in the problem, we
should solve the single-site problem first, and then introduce
the RKKY coupling perturbatively. Working in the subspace
defined by |11〉,|22〉,|21〉,|12〉, where the single-impurity
states |1〉 and |2〉 were defined in Eq. (8), we find that the
interaction will only mix |11〉 with |22〉 and |12〉 with |21〉. If
we focus on the last two, the Hamiltonian will be a bisymmetric
2 × 2 matrix with eigenstates 1/

√
2(|12〉 ± |21〉), similar to

what we had previously, but now with contributions from other
spin sectors.

Finally, one should consider the possibility that a strong
RKKY interaction may produce a singlet ground state in which
the two S = 1 impurities lock together directly. In our toy
example, this would occur in the case of J � JK . In this
regime, the conduction electrons lock into a singlet, and one
needs to carry out second-order perturbation theory in JK . The
result is a particular case of the standard RKKY theory, with
an effective coupling between impurities proportional to J 2

K/J .
In the extreme limit of the RKKY singlet, the band states are
not involved at all; thus there would be entanglement between
the two spins, but not between one spin and the band. In this
situation, the impurity entanglement entropy would also be
S = log 3. However, unlike the RKKY singlet described by
Eq. (10), the correlations between impurities would yield a
value 〈Sz

1S
z
2〉 = −2/3, instead of −4/9.

III. METHODS

A. Single impurity

In order to make the single-impurity problem amenable
to DMRG simulations, one needs to apply the unitary trans-
formation described in Ref. [91]. The premise is to map the
noninteracting lattice Hamiltonian Hband in Eq. (1) onto a
noninteracting semichain, in the same spirit as Wilson’s nu-
merical renormalization group method [71,75]. In the absence
of a lattice, Wilson chose a basis of partial waves that expand
radially away from the impurity. We use a similar approach, in
which the basis is built recursively by following a number of
very simple steps (we refer the reader to the original proposal
[91] for technical details): (i) we define a single-particle seed
orbital situated at the site connected to the impurity, (ii)
apply the noninteracting Hamiltonian to generate a Krylov
basis, and orthogonalize it following a Lanczos procedure.
The new single-particle wave functions are orthogonal and
connected to each other by a single matrix element. The
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FIG. 6. (a) Chain representation for the single-impurity problem.
The bulk noninteracting band structure is mapped via a canonical
transformation onto a semi-infinite chain. The impurity is connected
to the seed state. We also show the wave function amplitudes for the
Lanczos orbitals 4 and 8 in real space. For the two-impurity problem
(b), a folding transformation yields one-dimensional bonding and
antibonding channels. The many-body terms couple the impurities
to both.

resulting Hamiltonian in the Lanczos basis will be identical to a
semi-infinite chain with site-dependent hoppings; see Fig. 6(a).

We emphasize that this is an exact canonical transformation
and that the information about the lattice structure and the
hybridization to the impurity is completely preserved. The
many-body terms involve only the first site of the chain
(the seed orbital) and the impurity, and remain local after the
transformation. The resulting one-dimensional problem can
be easily solved with the DMRG method, with all numerical
errors under control.

Our calculations are conducted on finite systems on the
square lattice. One of the remarkable aspects of the mapping is
that the size of the chain corresponds to the linear dimension
of the original system: a chain of length L = 50 represents a
square tilted 45 degrees with 100 sites along the diagonal. The
“missing” orbitals in the Hilbert space live in different symme-
try sectors that do not couple to the impurity (similarly to the
NRG mapping, where only the s-wave sector is preserved). The
fact that the system is finite means that there is an additional
important energy scale, the level spacing �, which depends on
L. For values of the Kondo coupling JK < � we would find
the impurities in the free moment regime, decoupled from the
lattice. This is not a problem in the work presented here, since
all values of JK used are large enough.

We point out that the logarithmic Van Hove singularity in
the square lattice is very mild and does not affect the physics
as strongly as a power-law divergence does. For instance,
it was found that when the Hubbard model on the square
lattice is mapped within the dynamical mean-field theory to
an Anderson model with logarithmically diverging density of
states at the Fermi level, the Mott metal-insulator transition is
not affected [76].

In addition, one has to take another important consideration
into account: even and odd effects. In our present case, the
correct length that will realize the actual ground state of the

FIG. 7. (a) Energy gain as defined in Eq. (12) for the single-
impurity S = 1 Kondo problem with JK = 1 for chain lengths L = 40
in the Sz = 0,1 sectors, and L = 41 in the Sz = 1/2 sector. The
Sz = 1/2 sector corresponds to an underscreened impurity and is
energetically favorable for finite systems. (b) Impurity entanglement
entropy and (c) expectation value of the impurity moment, 〈Sz

imp〉,
for the same systems and parameters. These results show that for
|D| � JK the physical quantities show only very weak even/odd
effects, but these are large for |D| � JK .

problem is not obvious a priori, so we resort to studying the
energy gained by connecting an impurity with JK , compared
to the energy of a disconnected impurity with JK = 0:

�E(JK ) = E0(JK = 0) − E0(JK ). (12)

The system will typically lower its energy by entangling the
impurity to the conduction spins.

The results for fixed JK = 1 as a function of anisotropy D

are shown in Fig. 7 and demonstrate that in finite systems odd
chains with Sz = 1/2 realize a ground state that is energetically
favorable. However, for |D| � JK all physical quantities such
as the impurity entanglement entropy and 〈Sz

imp〉 are practically
indistinguishable regardless of the chain lengths.

As pointed out previously in Sec. II A 2, the energy differ-
ence is dominated by the residual ferromagnetic interactions
that are affected by the interlevel splitting in the noninteracting
chains. This can be studied quantitatively by considering the
energy gain as a function of system size for even and odd chain
lengths; see Fig. 8. A quadratic fit and L → ∞ extrapolations
indicate that the result in the thermodynamic limit is indepen-
dent of the parity of the chain length, as expected. This is easy
to understand: In a chain much longer than the Kondo length,
flipping a spin or removing a site from the chain should make
no difference in the physical behavior of the impurity. These
effects have been elegantly explained in Refs. [77,87], and are
a direct consequence of working on finite systems. Odd-length
chains present a state right at the Fermi level. When we turn
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FIG. 8. Scaling of the energy gain �E with system size 1/L for
JK = 1 and (a) D = 0.2, (b) D = 0, and (c) D = −0.2. For finite
systems the underscreened state in the Sz = 1/2 sector dominates in
all three cases. Lines represent quadratic fit in 1/L. Error bars in the
extrapolation are on the order of the symbol size.

on the Kondo interaction and this is smaller or on the order of
the level splitting, first-order perturbation theory introduces
a direct coupling between the impurity and this electronic
state, which is solely responsible for the screening. This is
why our description in Sec. II correctly describes the physics.
Even-length chains do not have a state at the Fermi level and
the first-order correction vanishes. The energy gain due to the
second-order correction is much smaller than that arising from
the first-order term. Therefore, the differences seen in Fig. 8
are all a simple consequence of the interlevel spacing in finite
chains. These results underscore the importance of carefully
handling the even-odd effects on finite systems and indicate
that the proper route in finite systems is to take Sz = 1/2 for
all values of D.

B. Two impurities

In order to generalize the aforementioned procedure to the
case of multiple impurities, one applies a block Lanczos trans-
formation. The resulting Hamiltonian is not block diagonal.
In the particular case of two impurities, this corresponds to a
ladder-like geometry [78,92–94]. An intuitive picture can be
offered as follows: Suppose that we pick two seed orbitals,

situated at the positions of the two impurities. We can apply
the procedure outlined above for a single impurity: the orbitals
will start expanding away from each impurity, generating two
one-dimensional chains. At some point, when the length of the
chains is R/2 (R being the distance between impurities along
the lattice axis) the orbitals start overlapping and interfering,
translating into terms mixing the two chains, which remain
local.

We can, however, exploit the reflection symmetry with
respect to the center point between the two impurities by choos-
ing the seed to be a bonding (symmetric) or antibonding (anti-
symmetric) linear combination of the original local seeds. For
each initial state, the Lanczos iteration procedure is identical
to that described in the single-impurity problem [91], with two
independent chains, one for each channel, that do not mix. The
resulting problem is then truly one-dimensional; see Fig. 6(b).
Under this transformation, the many-body interactions are
modified: there are terms mixing the impurities and the first
orbital of each chain. We note that this symmetrization is
identical in spirit and form to the folding transformation used in
the NRG calculations for the two-impurity problem [34], with
the main difference being that our symmetrization takes place
in real space instead of momentum space. The advantage of
this approach is not only that the recursion is greatly simplified,
but also that the equivalent one-dimensional problem greatly
reduces the entanglement, and thus the computational cost of
the simulations.

We consider a square lattice at half filling, mapped so
that each chain has an even number of sites. In the DMRG
simulations the truncation error was below 10−8, which implies
keeping up to 3600 states in some calculations.

IV. RESULTS

A. Isotropic case: D = 0,E = 0

In this section we present the results for the spin-1 two-
impurity problem in the absence of anisotropy. Based on the
intuition established through the studies of the spin-1/2 two-
impurity problem, two types of behaviors could be expected:
formation of two independent Kondo states, or coupling via
indirect exchange, with both processes in competition dictated
by the relative positions of the two spins and the magnitude of
the Kondo interactions JK . We will show that the spin-1 case
is more complex.

In Fig. 9, the spin-spin correlations 〈Sz
1S

z
2〉 between impuri-

ties are shown in the Sz = 0 sector as a function of the distance
between the impurities, R, for different values of JK . The spins
are positioned along the x axis, therefore even (odd) distances
correspond to impurities on the same (opposite) sublattice.
Since the RKKY interaction has different characters in these
two cases, we discuss them separately for clarity.

1. Opposite sublattices (R = 1,3, . . .)

When impurities are on opposite sublattices, the ground
state is a singlet, S = 0. As seen in the lower panel of Fig. 9,
the magnitude of transverse correlations is twice the value of
diagonal correlations, which is a signature of a singlet state.
With increasing JK , the correlations approach algebraically
the limiting value of 〈Sz

1S
z
2〉 = −( 2

3 )2 = −4/9. This result is
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FIG. 9. Diagonal (a) and off-diagonal (b) spin-spin correlations
between two spin-1 impurities as a function of their separation R for
a range of values of JK in the Sz = 0 sector. We use two chains of
length L = 61 each.

explained by considering two independent S = 1 problems
as discussed in Sec. II A: The case Sz = 0, JK → ∞ can be
described as one impurity forming an ms = 1/2 state with
a conduction electron, while the other forms an ms = −1/2
state with another conduction electron, resulting in a fourfold-
degenerate state. From the explicit form of the wave functions,
calculated in Sec. II A, it follows that the correlations should
equal the stated value. The same value is also reached in the
large-R limit for any finite value of JK .

These results show that the dangling spins (residual spin-
1/2 local moments) couple antiferromagnetically through the
indirect RKKY exchange. This means that, unlike in the case of
spin-1/2 Kondo impurities, Kondo and RKKY physics coexist.

Remarkably, at short distance R = 1 and for small inter-
action JK we find that the correlations tend to the RKKY
limit 〈Sz

1S
z
2〉 = −2/3. In order to understand this behavior

we studied the JK dependence of the correlations, as shown
in Fig. 10. Even though the entanglement entropy remains
constant S = log 3, the results indicate a crossover from an
RKKY singlet with two S = 1 impurities locked together for
small JK , to a “Kondo+RKKY” state at large JK , with the
correlations evolving from −2/3 to −4/9 as the singlet-triplet
gap increases. This is in agreement with our analysis in
Sec. II B.

2. Same sublattice (R = 2,4, . . .)

Impurities on the same sublattice yield a triplet ground state.
However, the gap to the excited nondegenerate singlet state is
quite small. Calculations were done with high-energy precision
and varying system sizes, L = 21, 41, and 61 (where L is
the size of each noninteracting chain without the impurity),
confirming that this gap is not a numerical artifact. The
splitting decreases with increasing impurity separation, as seen
in Fig. 11, and barely changes with chain size. The system

FIG. 10. (a) Spin-spin correlations between impurities at distance
R = 1 as a function of JK . The horizontal lines indicate the limiting
values −4/9 and −2/3. (b) Singlet-triplet gap between ground state
and first excited state for the same parameters.

is gapless in the thermodynamic limit: flipping the spin of
an electron very far from the impurity should not affect the
physics. But this finite-size gap is dictated by the level splitting
in the bulk, which is much larger than the singlet-triplet gap
measured in this plot. We interpret this result as follows: the
two impurities form a triplet (or singlet, depending on the
sublattice) state mediated by the RKKY interaction. In a similar
fashion as Nozières’s Fermi liquid picture for the single-
impurity Kondo problem, this “bound state” acts as a scattering
center for the conduction electrons that form an orthogonal
Fermi sea (notice that in the chain representation, the two
impurities are localized). The internal structure of the RKKY
state is as depicted by Fig. 5 and Eq. (10). From our discussion
in Sec. II B we learn that the singlet-triplet gap is dictated by
the residual interactions with the conduction electrons that are
responsible for mediating the RKKY exchange.

FIG. 11. Gap from the triplet (singlet) ground state to the first
excited state at even distances (blue) and odd distances (red) for JK =
1.0,D = E = 0,L = 41.
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FIG. 12. Energy gain for two S = 1 impurities as a function of
distance, for JK = 1,L = 41. The horizontal line represents the value
for two independent impurities at infinite distance.

Figure 12 shows the energy gain for two impurities obtained
using Eq. (12) withJK = 1. This quantity provides information
about the correlation energy. We notice that for impurities
on the same sublattice and for sufficiently large R,�E ap-
proaches a constant value: twice the energy gain for a single
impurity. This indicates that they tend to form two independent
Kondo clouds, oblivious to the presence of the other spin
and with the consequent fourfold degeneracy due to the two
dangling spins-1/2 pointing in arbitrary directions. This occurs
already at relatively short distances and is a remarkable aspect
of the two impurity problem on a half-filled bipartite lattice:
the electronic wave functions have nodes at the position of
the second impurity hindering the possibility of mediating an
indirect RKKY exchange [78]. The energy gain, or correlation
energy (Fig. 12), combines the contributions from the partial
Kondo screening [proportional to TK ∼ JK exp (−1/ρJK ) ≈
JK ] and the RKKY interaction. Therefore, it is not the energy
gain, but the finite-size gap (Fig. 11) that yields a measure of
JRKKY .

Rigorously, the strict ground state at even distances is
perfectly described in terms of two entangled Kondo states
forming a triplet, as obtained in Sec. II B. Due to the choice
of Sz = 0 in the DMRG calculations, we cannot observe
ferromagnetic alignment in the diagonal correlations; however
the off-diagonal correlations are minus twice the value of
the diagonal ones, which is a signature of a triplet state (see
Fig. 9). Since the system is degenerate, we can also consider
the ground state in the Sz = 1 sector (Fig. 13) to confirm this
interpretation. In this case, the dangling spins point in the same
direction and we expect the correlations in the z direction to
converge to b4 = ( 2

3 )2, which is indeed observed in Fig. 13.
Interestingly, the correlations only saturate to ( 2

3 )2 in the
strong-coupling limit and have a nonmonotonic behavior as a
function of JK . This is highlighted in Fig. 14 for distance R =
2. The reason the correlations dip below ( 2

3 )2 is the residual
ferromagnetic coupling of the spin-1 Kondo effect. This is a
well-known single-impurity phenomenon. At weak coupling,
the residual ferromagnetic interaction with the conduction
electrons reduces the absolute value of the correlations [55].
Upon increasing JK , the system tends toward the strong-

FIG. 13. Spin-spin correlations between two spin-1 impurities as
a function of their separation for a range of values of JK in the Sz = 1
sector. The horizontal dashed line indicates the value of 4/9. We only
show even sites, corresponding to a triplet ground state. L = 61.

coupling limit and the residual ferromagnetism disappears.
However, the impurities completely disentangle before that
limit is reached: at values of JK > 2 the spin-spin correlations
are 〈Sz

1S
z
2〉 = 〈Sz

imp〉2, where 〈Sz
imp〉 is the result for a single

impurity. The same effect would be seen for odd distances,
with the difference being that the correlations are negative.

B. Anisotropic case: D �= 0, E = 0

Once magnetic anisotropy is included [Eq. (2)], the impu-
rities display different behavior depending on the sign of D.
For clarity we discuss the two cases separately.

FIG. 14. Spin correlation between two impurities at fixed sepa-
ration R = 2 as a function of the Kondo coupling JK . The single-
impurity moment squared, 〈Sz〉2, is also shown for comparison. For
JK > 2, the two lines are almost indistinguishable, indicating two
essentially uncorrelated underscreened impurities. The chain lengths
are L = 84 and L = 40 for the two-impurity and single-impurity
cases, respectively.
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FIG. 15. Spin correlations between two spin-1 impurities as a
function of their separation R for different values of longitudinal mag-
netic anisotropy D > 0 with JK = 0.2 (top) and JK = 1.0 (bottom).
Here L = 104.

1. D > 0

When the anisotropy is positive, the ground state has Sz = 0
regardless of what sublattice the impurities are coupled to.
Figure 15 shows the z component of the correlations for a
small (JK = 0.2) and large (JK = 1.0) coupling. For positive
D, the impurity spin gets suppressed and the correlations shift
monotonically to zero. We do not observe ferromagnetism in
the longitudinal direction and the correlations remain always
antiferromagnetic, irrespective of distance.

In all cases, the correlations at long distances plateau at
a constant value 〈Sz

1S
z
2〉 → −b4 that depends on JK and D.

Moreover, for impurities on the same sublattice we find that
the ground state and the first excited state are quasidegen-
erate, with a gap on the order of 10−5 or smaller, indi-
cating that the two dangling spins are practically uncorre-
lated. As discussed in the isotropic case, the dangling spins
may point in either direction, leading to a fourfold (quasi)
degeneracy.

Due to the anisotropy, the correlations have different
behavior in the transverse direction, as seen in Fig. 16.
We first notice that for small values of D > 0 the mag-
nitude of the correlations increases. This was already ob-
served in Sec. II B for the simple case of two sites. For
large |D|, the correlations decay to zero, indicating the sup-
pression of the quantum fluctuations. In addition, we can
see the character of the RKKY interaction, oscillating be-
tween ferromagnetic and antiferromagnetic depending on the
sublattice.

2. D < 0

We switch now to the case of D < 0. In this situation,
the ground state has Sz = 0 if impurities are on opposite
sublattices, and Sz = ±1 when on the same sublattice. Results

FIG. 16. Spin correlations in the transverse direction for JK = 1.0
with D > 0.

for even distances are shown in Fig. 17. Here, the impurities
tend to align with increasing D, approaching the values
〈Sz

1S
z
2〉 = 1 and 〈Sx

1 Sx
2 〉 = 0, as expected from Ising spins.

The same argument applies to odd distances. In this case, the
impurities are antialigned but still behaving as Ising spins as
D → −∞, as seen in Fig. 18. Results for even distances in the
Sz = 0 sector are shown for comparison. Again these states
could be described as quasidegenerate, with the gap on the
order of 10−5.

3. Characterization through entanglement

The screening process can be characterized through the
entanglement between one impurity spin and the rest of the
system, shown in Fig. 19, together with the spin correlations.
We considered the impurities at distance R = 2 and JK = 1,
with chains of size L = 51. Magnetic anisotropy (finite D)
tends to kill the spin fluctuations. For sufficiently large D < 0
the impurities behave as Ising spins. For D > 0 the impurities
become practically uncorrelated in the z direction, but anti-

FIG. 17. Longitudinal (top) and transverse (bottom) spin correla-
tions for JK = 1.0 with D < 0 at even distances for Sz = 1.
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FIG. 18. Longitudinal (top) and transverse (bottom) spin correla-
tions for JK = 1.0 with D < 0 with Sz = 0.

ferromagnetic correlations survive in the transverse direction.
This is consistent with the renormalization group analysis
[64] that indicates that the system should develop a dominant
transverse anisotropy for D > 0.

FIG. 19. (a) Diagonal and (b) off-diagonal spin-spin correlations
between impurities at distance R = 2 for JK = 1 as a function of
magnetic anisotropy D and for Sz = 0. We show results for chains
of length L = 2n + 1. (c) Entanglement entropy for one of the
impurities, obtained by tracing over the rest of the system.

FIG. 20. Diagonal and transverse spin-spin correlations for impu-
rities at different distances and parameters JK = 1.0,D = −0.2,E =
0.05.

C. Transverse anisotropy: D < 0, E �= 0

Including the transverse anisotropy term E, see Eq. (7),
mixes subspaces with different total Sz, making calculations
considerably costlier. We looked at one particular case, for
parameters JK = 1.0,D = −0.2,E = 0.05, and calculated the
spin-spin correlations as a function of the interimpurity dis-
tance, shown in Fig. 20. In this case, the ground state is
always nondegenerate but the gap still remains very small when
the spins are on the same sublattice and decreases with the
interimpurity distance. This indicates that for even distances
we still have an S = 1/2 degree of freedom that practically
remains dangling. The effects of the transverse anisotropy
are quite dramatic, when comparing to Figs. 15 and 16: The
transverse correlations, even though they preserve the same
structure, are considerably reduced, while the longitudinal one
now presents the character proper to the RKKY interaction
and oscillates between ferro- and antiferromagnetic. This
oscillation is now observable because the interaction is mixing
states with impurities pointing in either direction.

V. CONCLUSIONS

We have conducted an extensive study of the two-impurity
Kondo problem for spin-1 adatoms on a square lattice. We
provide a simple intuitive picture and identify the different
regimes, depending on system size, Kondo coupling JK ,
and magnetic anisotropy. For two impurities, the nature and
properties of the ground state depend most importantly on the
spins being on the same or opposite sublattices. Impurities
on opposite (the same) sublattices have a singlet (triplet)
ground state. However, the energy difference between the
triplet ground state and the singlet excited state is very small
and we expect a fourfold-degenerate ground state for impurities
on the same sublattice. For large enough JK the impurities
become completely uncorrelated forming two independent
underscreened states with the conduction electrons.

Interestingly, our calculations support a picture in which
underscreening (Kondo) and RKKY correlations coexist: con-
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duction electrons partially screen the individual impurities, and
the dangling S = 1/2 degrees of freedom are responsible for
establishing RKKY correlations between them. One should be
mindful that the effective energy scale in the problem JRKKY

is typically smaller than the finite-size level splitting. There is
a possibility that a more complex behavior might emerge as a
result when both quantities become comparable.

In order for the impurities to realize quasiclassical behavior
we need to go to the large D < 0 limit. For anisotropies on
the order of the Kondo coupling the impurities always display
an important amount of entanglement. The dependence of the
entanglement and correlations on system size indicates that this

behavior could be realized in experiments by electrostatically
confining the impurity to an “electron puddle” (Kondo box) and
varying the size of the confining potential around the impurity.
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