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Reversal of particle-hole scattering-rate asymmetry in the Anderson impurity model
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We study the particle-hole asymmetry of the scattering rate in strongly correlated electron systems by
examining the cubic ω3 and ωT 2 terms in the imaginary part of the self-energy of the Anderson impurity
model. We show that the sign is opposite in the weak-coupling and strong-coupling limits, explaining the
differences found in theoretical approaches taking the respective limits as the starting points. The sign change
in fact precisely delineates the crossover between the weak- and strong-correlation regimes of the model. For
weak interaction U the sign reversal occurs for small values of the doping δ = 1 − n, while for interaction of
order U ≈ 2�, � being the hybridization strength, the crossover curve rapidly shifts to the large-doping range.
This curve, based on the impurity dynamics, is genuinely different from other crossover curves defined through
impurity thermodynamic and static properties.
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In contemporary strongly correlated quantum materials,
such as the cuprate superconductors and sodium cobaltates,
one finds that spectral line shapes from angle-resolved pho-
toemission spectroscopy (ARPES) differ qualitatively from
those in simple Fermi liquids. The origin of the difference
has been traced to a large correlation-induced asymmetry in
the imaginary part of the self-energy [1,2], which can be
expanded as

Im �(ω, T ) = a(ω2 + π2T 2) + bω3 + cωT 2 + · · · . (1)

For context, note that the usually quoted Fermi-liquid self-
energy, namely, the first two terms in this expression, is even
in ω. While this is dominant at the lowest energies, the higher-
order odd in ω terms become important when their coefficients
(b, c) become sufficiently large. This is found to happen in the
strong-correlation models, while in weakly correlated systems
these coefficients are very small. The signs of (b, c) are of
particular importance: They determine whether particles or
holes have the shorter lifetime. Since a < 0, if b < 0, the
particlelike excitations scatter more strongly on the impurity
(are more damped) than the holelike excitations with the same
excitation energy (absolute value of ω), and vice versa for
b > 0. Understanding the asymmetry of the self-energy is a
problem of great current interest. The asymmetry of Im �

is relevant to transport coefficients such as the thermopower,
where the entropy and charge are carried by both particlelike
excitations above the Fermi level and holelike excitations
below it. However, in the low-T thermopower there are other
competing factors (asymmetry of the density of states, asym-
metry of the quasiparticle velocities), hence the situation is
not solely controlled by the sign of the scattering asymmetry.

The single-impurity Anderson model (SIAM) is a “labora-
tory example” of an exactly solvable many-body problem. It
is simpler but has many similarities to the lattice many-body
problems such as the Hubbard model. It is therefore a natural

place to understand the magnitude and signs of the asymmet-
ric corrections to the lowest-order Fermi-liquid theory result
mentioned above. The goal of this Rapid Communication is to
explore this asymmetry by using the numerical renormaliza-
tion group (NRG), and to contrast it with various approximate
theories. We report a surprising result in this well-studied
problem: We find a line in the U -n plane where the asymmetry
changes sign. Here, U is the interaction strength and n the
impurity occupancy. Along this one-dimensional line in the
U -n plane, the particle-hole (p-h) symmetry of the scatter-
ing rate is exactly fulfilled up to the fifth- and higher-order
terms. This change of sign demarcates the border between
the qualitatively different regimes of weak and strong cor-
relations. Indeed, this Rapid Communication was motivated
by the puzzling observation that weak-coupling approaches
(e.g., perturbation theory in the interaction strength U ) and
strong-coupling techniques [e.g., the extremely correlated
Fermi-liquid (ECFL) theory [2–4]] give opposite signs for the
asymmetry, as illustrated in Fig. 1.

The SIAM is defined by the Hamiltonian

H = εd (n↑ + n↓) + Un↑n↓

+
∑

kσ

εkc
†
kσ ckσ +

∑

kσ

(tkc
†
kσ dσ + H.c.), (2)

where εd is the impurity level, dσ are impurity operators,
nσ = d†

σ dσ and n = 〈n↑ + n↓〉, and ckσ are operators for
conduction-band electrons with energy εk that couple with the
impurity with amplitude tk . The hybridization strength is � =
π

∑
k |tk|2δ(ω − εk ); we will assume it to be a constant func-

tion in the domain −D < ω < D. In the following we will
make use of the Hartree-Fock parameter Ed = εd + U 〈nσ 〉
with Ed = 0 corresponding to the p-h symmetric n = 1 case.
We also define the dimensionless interaction u = U/π�. We
will limit our consideration to n < 1, since the results for
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FIG. 1. Imaginary parts of the self-energy in (a) weak-coupling
theory and in (b) strong-coupling theory have the opposite sign of the
particle-hole asymmetry. The second-order perturbation theory result
corresponds to Ed/� = 1 in Fig. 2 of Ref. [5], and the extremely
correlated Fermi-liquid theory result to n = 0.6 in Fig. 5 of Ref. [4].

n > 1 can be obtained by the p-h transformation dσ → d†
σ ,

ckσ → −c
†
kσ , which takes ω to −ω.

Second-order perturbation theory in U for the SIAM [5]
[e.g., Fig. 1(a) for Ed/� = 1] predicts b to be of constant sign
as a function of n in the full domain 0 < n < 1, with zero
value at n = 1. Specifically, b < 0, i.e., the particlelike excita-
tions scatter more strongly. At nonzero but low temperatures,
the asymmetry of Im �(ω) at low ω will be controlled by the
ωT 2 term. Due to conformal symmetry of the FL fixed point,
c = bπ2, thus the sign of the asymmetry does not depend on
T at low enough temperatures [6].

By extending the perturbative expansion to third order, we
find that the third-order contributions tend to have the opposite
sign of the second-order ones for small ω, i.e., they reduce
the scattering. Furthermore, the asymmetry of the third-order
contribution is such that the ω > 0 part is dominant (for
n < 1), thus the third-order reduction in scattering is stronger
for particlelike excitations [see Fig. 2(a)]. There is thus a
competition between the second- and third-order contribu-
tions which may lead to a change in sign of the asymmetric
terms. The contributions b(2) and b(3) to the coefficient b

actually follow very similar qualitative Ed dependence [see
Fig. 2(b)], except for the sign and evidently a different power
of u = U/π�. Based on these results, the change of sign in b

should occur for u ∼ 1, i.e., U ∼ π�. Since the perturbation
theory also breaks down at u ∼ 1, we cannot make a precise
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FIG. 2. (a) Second-order and third-order imaginary part of the
self-energy for a range of the Hartree-Fock parameters Ed = εd +
U〈nσ 〉. The y axis is scaled as 1/(�un), where n is the expansion
order and u = U/π�. T = 0. (b) Coefficient b of the ω3 term in
Im �(ω, T = 0) at second and third order in perturbation theory.

statement about the details of this sign change within the bare
perturbative approach.

We therefore solved the impurity problem numerically
using the numerical renormalization group (NRG) [7–12].
This nonperturbative approach is based on logarithmic dis-
cretization of the continuum, mapping onto a tight-binding
chain with exponentially decreasing hopping constants, and
iterative diagonalization of the resulting Hamiltonian [7,8,12].
Through various refinements over the years [11,13–20] the
technique has developed into a powerful tool for computing
the dynamical properties of impurity models. Comparisons
with quantum Monte Carlo simulations indicate that the re-
sults of the NRG, when taken to full convergence, may be
considered as essentially exact (up to very small systematic
errors due to discretization and truncation). We performed
the NRG calculations with a narrow broadening kernel by
averaging over Nz = 32 interleaved discretization grids with
the discretization parameter � = 2, and increasing the trun-
cation cutoff until convergence [20]: These steps reduced the
oscillatory artifacts and allowed a reliable extraction of the
cubic term in the self-energy function in the limit of small

161121-2



REVERSAL OF PARTICLE-HOLE SCATTERING-RATE … PHYSICAL REVIEW B 98, 161121(R) (2018)

b>0

b<0

2 4 6 8 10
U/Γ

−40

−20

20

k

n=0.6

0.2 0.4 0.6 0.8 1.0
n

−40

−20

0

20

k

U/Γ=5

FIG. 3. Top: Sign (red negative, blue positive) and magnitude
(color saturation) of the ω3 term in Im �(ω, T = 0). The quan-
tity shown is the coefficient k in the fit of the antisymmetrized
and normalized combination [Im �(ω) − Im �(−ω)]/[Im �(ω) +
Im �(−ω)] with the linear function kω. The fit is performed in an
energy interval ω ∈ [−ξ : ξ ]; here, ξ is the low-energy scale of the
problem defined as the temperature where the impurity moment is
screened (and is equivalent to the Kondo temperature in the Kondo
regime of the model). Notice that k ≈ b/a and that a < 0. The three
magenta points joined by a line are considered in Fig. 4. The dashed
lined at n = 1 indicates a further zero crossing of the coefficient
k at the particle-hole symmetric point of the Hamiltonian itself.
Bottom: Cross sections at constant interaction U/� = 5 and constant
occupancy n = 0.6.

ω. The results, shown in Fig. 3, reveal a change of sign of
the coefficient b in Im � along a curve in the U -n plane
(black line in the figure). At low U 
 �, the sign reversal
occurs close to half filling. For U of order �, the sign-change
point rapidly moves away from half filling. At still higher U ,
the slope of the black curve in the U -n plane redresses and
becomes increasingly vertical for U � π�.

These results are fully consistent with our perturbative
analysis. For very small U , the third-order term is negligibly
small and the sign is constant in essentially the full 0 < n < 1
interval. In this regime, the curve separating the different signs
in the U -n plane is almost vertical and close to n = 1. At some
value of U of order π�, the perturbation theory predicts that
the third-order contribution will overtake the second-order
contribution for most Ed at almost the same value of u,
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FIG. 4. Spectral function and imaginary part of self-energy for
n = 0.6 and three values of U/π� across the sign-reversal line
(magenta line in Fig. 3). (a) Spectral functions computed using the
NRG, and (b) closeups on the low-ω range. (c) Im � computed using
the NRG and two weak-coupling approaches. Here, � = 0.01D,
T = 0. b for the NRG calculations has the sign of the slopes of the
dashed lines in the figures.

and b will thus change in a wide n interval. Indeed, this
seems to correspond to U ≈ 2� where the curve in the U -n
plane abruptly changes slope and becomes almost horizontal.
Around the same u, however, we enter the strong-coupling
regime where the perturbation theory breaks down. Note that
for large u = U/� the crossover (as n increases from 0) to
the “strong-coupling” domain with b > 0 already takes place
in the mixed valent regime of the impurity model; the deep
Kondo limit is confined to values of n close to 1.

We also performed the skeleton expansion to second or-
der, which is a self-consistent calculation where the dressed
Green’s function is used as the propagator in the second-
order term of the self-energy. This corresponds to an infinite
resummation of a certain class of diagrams, which for small
U reduces to the bare perturbation theory in U . The results
show that the coefficient b has the same sign for any value of
U and n, i.e., the sign associated with the weak-coupling limit
(see Fig. 4). This can also be shown analytically by invoking
the Friedel sum rule [21]—for the skeleton expansion this
leads to b/a ∝ sin(nπ )/�, which makes b negative for all n.
The absence of sign change seems to imply that the skeleton
expansion is not able to describe the transition to the dynamics
expected in the strong-coupling regime, presumably because
its starting point is still the noninteracting limit. On the other
hand, the extremely correlated Fermi-liquid theory produces
the correct sign of the scattering-rate asymmetry because it is
constructed as a strong-coupling approach by projecting out
the double-occupancy from the outset.

Next, we compare the crossover curve with other quantities
sensitive to the magnetic behavior of the impurity. The local-
moment fraction fLM = n − 2〈n↑n↓〉 is equal to the expecta-
tion value of the projection operator to the singly occupied
impurity state (the state which carries the spin degree of
freedom). It behaves as fLM = n in the U � � limit, while the
small-U dependence is shown in Fig. 5. None of the contours

161121-3



ŽITKO, KRISHNAMURTHY, AND SHASTRY PHYSICAL REVIEW B 98, 161121(R) (2018)

0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

n

U
/Γ

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

FIG. 5. Local-moment fraction fLM = n − 2〈n↑n↓〉.

(isocurves) resembles the sign-reversal curve from Fig. 3.
Most notably, the contours in fLM approach the n = 1 line
with zero slope and do not curve down. Other thermodynamic
quantities, such as the characteristic low-energy scale of the
problem defined by the temperature where the impurity en-
tropy and the effective moment become small (i.e., the Kondo
temperature in the Kondo regime), also correlate with the
dependence of fLM on U and n (not shown). The scattering
asymmetry is thus not simply related to the degree of local-
moment formation, but requires a calculation of dynamical
properties.

We now discuss the relevance of these results to the low-
temperature thermopower in correlated systems. Two cases
need to be distinguished. In quantum dots that are directly
described by the SIAM, the thermopower is determined by
the asymmetry of the spectral function around the Fermi
level, i.e., its Fermi-level slope [22–24]. The asymmetry of
the particle-hole scattering is not important as such, as it
only enters as one factor that affects the spectral-function
slope. The situation is different for bulk systems described

by the Hubbard model that map within the dynamical mean-
field theory (DMFT) approximation to a SIAM with a self-
consistently defined hybridization function [25–31]. There,
the thermopower is given by the “leading” term proportional
to the Fermi-level slope of the transport function that is “cor-
rected” by a term proportional to the coefficients of the cubic
terms in Im �. This is actually an order 1 correction [29,30],
which may become dominant close to half filling. Due to the
DMFT self-consistency, this term has a complex dependence
on specific details of the problem [shape of the noninteracting
density of states (DOS), doping level, strength of the interac-
tion compared to the critical Uc2 of the Mott metal-to-insulator
transition]. We plan to present a study of these in a separate
publication.

In conclusion, we uncovered a crossover line in the phase
diagram of the single-impurity Anderson model with a flat hy-
bridization function which corresponds to a change in the scat-
tering dynamics. On one side of this line the impurity behaves
as a weakly renormalized resonant level, and on the other side
as a magnetic impurity. On the weakly correlated side, the
particlelike excitations scatter more strongly than the holelike
excitations, while the opposite is the case on the strongly
correlated side. This crossover might be directly observable
in quantum dot experiments [32,33] provided that the spectral
function can be measured in a sufficient energy window so
that the reconstruction of the full Green’s function G(ω) is
possible via the Kramers-Kronig transformation: Assuming
that the hybridization function is approximately constant close
to the Fermi level, the particle-hole scattering asymmetry can
be easily extracted from Im[G(ω)−1]. The predicted almost
exact particle-hole symmetry of the scattering rate along the
crossover line in the U -n plane should make it an interesting
feature to test for in experiments on magnetic adsorbates and
quantum dots.
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