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conductance G ! dI=dV using standard lock-in tech-
niques, with an rms modulation bias of 1 !V at 337 Hz.
The dot is cooled in the mixing chamber of an Oxford
Instruments Kelvinox TLM dilution refrigerator with a
base electron temperature of 13 mK [20].

At base temperature, the Kondo effect produces a char-
acteristic enhancement of conductance through the quan-
tum dot at odd occupancy (""0, "0 #U > !), as seen in
Fig. 1. The couplings of the dot to its two leads are tuned to
maximize TK while keeping the two couplings nearly
equal. The saturation of conductance at a value near
1:75e2=h throughout the middle of the Kondo plateau
["209 mV<VG <"199:5 mV in Fig. 1(c)] confirms
that Tbase $ TK and indicates that the coupling asymmetry
is around 2:1 [2]. Conductance as a function of source-
drain bias in the Kondo plateau shows a narrow peak
centered at zero bias, known as the Kondo peak [Fig. 1(b)].

As the temperature increases from 13 to 205 mK the
overall Kondo conductance decreases [Figs. 1(b) and 1(c)].
Previous measurements found the temperature evolution of
linear conductance G%T; V ! 0& to be well described by an
empirical Kondo (EK) form derived from a fit to numerical
renormalization group conductance calculations [15],

 GEK%T& ! G0=!1# %T=T0K&2"s: (1)

Here, s ! 0:21 and TK
0 ! TK=%21=s " 1&1=2, which defines

TK as the temperature at which the Kondo conductance is

half of its extrapolated zero-temperature value:GEK%TK& !
G0=2. The values of G0 and TK we extract are shown in
Fig. 2(a). The Kondo conductance traces in our measure-
ments follow the EK form very well at low temperatures
(T < TK=4), but deviate from it at higher temperatures, as
seen in Fig. 2(b). Though the origin of the deviation at
higher temperatures is not completely understood, it most
likely reflects the emergence of additional transport pro-
cesses at higher temperatures. We limit the temperature
range for our fits to T < 35 mK.

To determine whether bias and temperature obey a scal-
ing relationship at low temperatures we fit the low-energy
conductance to the form

 G%T; V& ' G0 " ~cT%kT&PT " ~cV%eV&PV : (2)

Here PT and PV are exponents that characterize the tem-
perature and bias dependence, respectively, and ~cT and ~cV
are expansion coefficients. Unlike the EK form [Eq. (1)],
Eq. (2) does not assume quadratic behavior at low tem-
perature. We first extract PV by fitting G%T; 0& "G%T; V&
as a power law in voltage for jVj< 7 !V at each tempera-
ture point below 20 mK. We find that PV is nearly constant
across the Kondo plateau with an average value of 1:9(
0:15 [Fig. 3(a)]. Extracting PT is more difficult since only a
few temperature points unambiguously reside in the
power-law regime at each gate voltage point. Fits for
T=TK yield a mean value of PT ! 2:0( 0:6 across the
Kondo plateau [21]. These fits are consistent with tempera-
ture and bias sharing a characteristic exponent of 2, as
theoretically expected for the single-channel Kondo effect,
and we assume this universality for the remainder of our
analysis.

Having determined the characteristic scaling exponent,
we now examine to what extent the low-energy nonequi-
librium conductance G%T; V&=G0 is described by a univer-
sal scaling function, F%T=TK; eV=kTK). We assume as a
starting point thatG%T; 0& follows the universal curve given
by Eq. (1) and examine the evolution of the differential

FIG. 2. (a) Values of G0 and TK across the Kondo plateau,
extracted using the empirical Kondo (EK) form GEK%0; T& !
G0=%1" %T=TK 0&2&s with TK

0 ! TK=%21=s " 1&1=2. The fit was
performed using data points for temperatures between 13–
35 mK. (b) A plot of the scaled conductance 1" G%T; 0&=G0
versus T=TK for all measured temperatures and gate voltage
points across the Kondo plateau [18]. The solid line shows the
empirical Kondo form.

FIG. 1 (color online). (a) Differential conductance (G) mea-
sured as a function of VG and source-drain bias at T ! 13 mK.
(b) Temperature dependence of the Kondo peak in conductance
for T ! 13–205 mK at VG ! "203 mV. (c) Temperature de-
pendence of the Kondo plateau for T ! 13–205 mK at V !
0 !V. (d) The SEM image shows the quantum dot device with
an overlaid measurement schematic. The topmost lead (marked
‘‘NC’’) is pinched off from the dot and does not contribute to
transport.
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conductance G ! dI=dV using standard lock-in tech-
niques, with an rms modulation bias of 1 !V at 337 Hz.
The dot is cooled in the mixing chamber of an Oxford
Instruments Kelvinox TLM dilution refrigerator with a
base electron temperature of 13 mK [20].

At base temperature, the Kondo effect produces a char-
acteristic enhancement of conductance through the quan-
tum dot at odd occupancy (""0, "0 #U > !), as seen in
Fig. 1. The couplings of the dot to its two leads are tuned to
maximize TK while keeping the two couplings nearly
equal. The saturation of conductance at a value near
1:75e2=h throughout the middle of the Kondo plateau
["209 mV<VG <"199:5 mV in Fig. 1(c)] confirms
that Tbase $ TK and indicates that the coupling asymmetry
is around 2:1 [2]. Conductance as a function of source-
drain bias in the Kondo plateau shows a narrow peak
centered at zero bias, known as the Kondo peak [Fig. 1(b)].

As the temperature increases from 13 to 205 mK the
overall Kondo conductance decreases [Figs. 1(b) and 1(c)].
Previous measurements found the temperature evolution of
linear conductance G%T; V ! 0& to be well described by an
empirical Kondo (EK) form derived from a fit to numerical
renormalization group conductance calculations [15],

 GEK%T& ! G0=!1# %T=T0K&2"s: (1)

Here, s ! 0:21 and TK
0 ! TK=%21=s " 1&1=2, which defines

TK as the temperature at which the Kondo conductance is

half of its extrapolated zero-temperature value:GEK%TK& !
G0=2. The values of G0 and TK we extract are shown in
Fig. 2(a). The Kondo conductance traces in our measure-
ments follow the EK form very well at low temperatures
(T < TK=4), but deviate from it at higher temperatures, as
seen in Fig. 2(b). Though the origin of the deviation at
higher temperatures is not completely understood, it most
likely reflects the emergence of additional transport pro-
cesses at higher temperatures. We limit the temperature
range for our fits to T < 35 mK.

To determine whether bias and temperature obey a scal-
ing relationship at low temperatures we fit the low-energy
conductance to the form

 G%T; V& ' G0 " ~cT%kT&PT " ~cV%eV&PV : (2)

Here PT and PV are exponents that characterize the tem-
perature and bias dependence, respectively, and ~cT and ~cV
are expansion coefficients. Unlike the EK form [Eq. (1)],
Eq. (2) does not assume quadratic behavior at low tem-
perature. We first extract PV by fitting G%T; 0& "G%T; V&
as a power law in voltage for jVj< 7 !V at each tempera-
ture point below 20 mK. We find that PV is nearly constant
across the Kondo plateau with an average value of 1:9(
0:15 [Fig. 3(a)]. Extracting PT is more difficult since only a
few temperature points unambiguously reside in the
power-law regime at each gate voltage point. Fits for
T=TK yield a mean value of PT ! 2:0( 0:6 across the
Kondo plateau [21]. These fits are consistent with tempera-
ture and bias sharing a characteristic exponent of 2, as
theoretically expected for the single-channel Kondo effect,
and we assume this universality for the remainder of our
analysis.

Having determined the characteristic scaling exponent,
we now examine to what extent the low-energy nonequi-
librium conductance G%T; V&=G0 is described by a univer-
sal scaling function, F%T=TK; eV=kTK). We assume as a
starting point thatG%T; 0& follows the universal curve given
by Eq. (1) and examine the evolution of the differential
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extracted using the empirical Kondo (EK) form GEK%0; T& !
G0=%1" %T=TK 0&2&s with TK

0 ! TK=%21=s " 1&1=2. The fit was
performed using data points for temperatures between 13–
35 mK. (b) A plot of the scaled conductance 1" G%T; 0&=G0
versus T=TK for all measured temperatures and gate voltage
points across the Kondo plateau [18]. The solid line shows the
empirical Kondo form.

FIG. 1 (color online). (a) Differential conductance (G) mea-
sured as a function of VG and source-drain bias at T ! 13 mK.
(b) Temperature dependence of the Kondo peak in conductance
for T ! 13–205 mK at VG ! "203 mV. (c) Temperature de-
pendence of the Kondo plateau for T ! 13–205 mK at V !
0 !V. (d) The SEM image shows the quantum dot device with
an overlaid measurement schematic. The topmost lead (marked
‘‘NC’’) is pinched off from the dot and does not contribute to
transport.
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Kondo Model
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the family of kondo 
impurity models
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fully screened
 Kondo model

underscreened 
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overscreened 
Kondo model

impurity spin, S 1/2 1 1/2

Nchannels 1 1 2

fixed point Fermi liquid singular Fermi liquid non-Fermi liquid

Classification according to 2S vs. Nchannels

P. Nozières and A. Blandin.  J. Physique 41, 193 (1980)



Physical realizations
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Fermi Liquids
•Excitations are “quasiparticles”: same charge, spin 

and statistics as electrons, but different effective 
mass; “dressed” fermions.

•Residual interactions between quasiparticles go to 
zero as the Fermi level is approached.

•Specific heat ∝T, scattering rate ∝ω2

hb, out|a, ini ⌘ hb, in| ˆS|a, ini
hk�, in|Ŝ|k0�0, ini = 2⇡�(k � k0)���0S(!)

S(ω) analytic around ω=0|S(! = 0)| = 1

P. Mehta et al., Phys. Rev. B 72, 014430 (2005)P. Nozieres, J. Low. Temp. Phys., 17, 31 (1974)



Underscreened
Kondo Effect for S=1 MODEL

Je↵ =
1

ln(!/T0)

W. Koller et al., Phys. Rev. B 72, 045117 (2005)
P. Mehta et al., Phys. Rev. B 72, 014430 (2005)

1/ln2(ω/T0) cusps in spectral functions

S(ω) singular around ω=0|S(! = 0)| = 1

ferromagnetic residual coupling

This is a singular Fermi liquid!
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OVERSCREENED KONDO EFFECT 
FOR Two-channel S=1/2 MODEL

P. Nozieres and A. Blandin.  J. Physique 41, 193 (1980)

• |S(ω=0)|=0, incoming electrons scatters into 
particle-hole excitations

• Non-interacting fixed point, but in terms of 
Majorana fermions  "  non-Fermi liquid

• √ω cusps in spectral functions

Maldacena, Affleck: bosonization, conformal field theory
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Underscreened Kondo Effect

C60 molecule
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Two-Channel Kondo effect
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(spin) thermopower
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(spin) thermopower
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(spin) thermopower
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Numerical 
Renormalization Group
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Conclusion

• Spin thermopower, measured as a 
function of B and T, would allow very 
clear distinction between the different 
types of the Kondo effect.

• SFL and NFL exhibit strong spin 
polarization in high and low-ω part of 
the spectral function, respectively.
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