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I. SINGLE QUANTUM DOT: SUPERCONDUCTING STATE
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Figure 1: (Color online) Single quantum dot coupled to a super-
conducting lead. (a) Sub-gap (ω < ∆) part of the many-particle
excitation spectrum which includes one spin-singlet and one spin-
doublet. The energies are plotted by subtracting the ground-state
energy, thus the lowest lying state is always at E = 0. The contin-
uum of quasiparticle states extends from E = ∆ upwards. The in-
set shows the ground-state expectation value of the pairing operator,
〈d↑d↓〉, whose sign reveals the type of the ground state. (b) The cor-
responding impurity spectral function, measurable through tunneling
spectroscopy. (c) Spectral function in an extended frequency range
plotted using a nonlinear grayscale to emphasize the low-intensity
details outside the gap.

For parameters from the main text, TK is lower than ∆
close to half filling, the local moment remains unscreened and
the ground state is a spin doublet, see Fig. 1(a). TK increases
with increasing |δ| until at |δ| ≈ 0.1 the condition

TK(δ) ≈ 0.3∆ (1)

is satisfied and the new ground state is the spin singlet. This
level crossing is accompanied by discontinuities in all physi-
cal properties, for instance in the expectation value of the local
pairing operator 〈d↑d↓〉 (inset to panel a) and in the spectral
function (panels b and c). The spectral function is defined as

A(ω) =
1

Z

∑
i,j

[exp(−βEi) + exp(−βEj)]

×
(
〈i|d†σ|j〉

)2
δ [ω − (Ej − Ei)] ,

(2)

with Z =
∑
i exp(−βEi), i and j run over all many-particle

states and β = 1/kBT . The only sub-gap excitation that con-
tributes to A(ω) at zero temperature is the transition from sin-
glet to doublet state (or vice versa), which produces a pair of
peaks at ω = ±(ED − ES). The total weight of these peaks
depends on δ and varies discontinuously across the transition.
The spectrum above and around the gap edges features atomic
peaks at ω ≈ ε and ω ≈ ε+ U which fuse with the supercon-
ducting coherence peaks at |ω| = ∆. This occurs close to (but
not exactly at) the singlet-doublet quantum phase transition
points.

II. DOUBLE QUANTUM DOT: NORMAL STATE

A. Left-right particle-hole symmetric case

At half filling the Kondo screening competes with the inter-
dot superexchange coupling J = 4t2/U . The spectrum is
shown in Fig. 2. For small t, it is the same as in the single-
impurity case, with broad peaks at ω = ±U/2 and a Kondo
resonance at ω = 0. The low-frequency part of the spec-
trum starts to be affected by the superexchange interaction
for t such that J ∼ TK . For our parameters this occurs at
t ∼ 10−2. The behavior in this range is governed by the prox-
imity of the two-impurity Kondo model (TIKM) non-Fermi-
liquid fixed point1,2. For t & 10−2 the Kondo peak amplitude
is reduced and a splitting of order J ∝ t2 becomes observable.
As t increases further, the hybridization between the local or-
bitals becomes the dominant effect, resulting in the splitting
between the anti-bonding and bonding molecular orbitals that
is linear in t. This occurs at t ∼ 10−1. The Kondo, the anti-
ferromagnetic, and the molecular-orbital regimes can be even
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Figure 2: (Color online) Spectral function on one of the dots,A1(ω),
in the left-right symmetric DQD system in the normal state with lin-
ear (upper panel) and logarithmic (bottom panel) frequency scales.
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Figure 3: (Color online) Interdot spectral functionA12(ω) in the left-
right symmetric DQD system in the normal state with logarithmic
frequency scale. This spectral function is odd in frequency, thus we
only show ω > 0. The enhancement of A12(ω) at ω ∼ TK , which
occurs for t ≈ 9 × 10−3, indicates the two-impurity Kondo model
critical point, and the enhancement at ω ∼ 0.1 ≈ t indicates the
transition to the molecular-orbital regime.

more clearly distinguished in the inter-impurity spectral func-
tionA12(ω) shown in Fig. 3. The plot on the logarithmic scale
allows easy identification of the cross-over scales defined by
J ∼ TK and J ∼ t, respectively. The change of slope of
the main ridge in A12(ω) from quadratic to linear directly re-
veals the cross-over of the main coupling mechanism from
the superexchange interaction to the hybridization (bonding)
effects.
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Figure 4: (Color online) Spectral function A1(ω) in the left-right
symmetric DQD system away from half-filling. (a) Small coupling
t = 10−3, (b) intermediate coupling t = 2.15× 10−2.

B. Away from particle-hole symmetry

We maintain the left-right symmetry, but move away from
the half filling. For low inter-dot coupling t, the behavior mir-
rors that of single dots, see Fig. 4, top panel. With increasing
δ the atomic peaks shift to higher energies and the width of
the Kondo resonance increases as TK grows. This continues
until δ ≈ U/2− Γ ≈ 0.1 when the system enters the valence
fluctuation regime and the Kondo resonance merges with the
lower atomic peak. For even larger δ, the system is in the
empty orbital regime with no electrons occupying the quan-
tum dot. For larger t the spectra are similar, but an exchange
splitting becomes visible in the Kondo regime, see Fig. 4, bot-
tom panel.

C. Fully generic case

To study the fully generic case with different on-site en-
ergies δi, we fix δ2 and plot the sweeps of δ1 for different
values of the inter-dot coupling t. At δ2 = 0, the dot 2 is half
filled and thus in the Kondo regime. At large enough t the ex-
change coupling J starts to influence the spectra. The results
for t = 10−2 are shown in the top row in Fig. 5. For small δ1
we observe on both dots the expected exchange splitting of the
Kondo resonance. TK on dot 1 increases with increasing δ1.
Near δ1 = 0.07, the condition J ∼ TK is fulfilled, as revealed
by the disappearance of splitting in A2(ω) for δ1 > 0.07. The
splitting in A1(ω) persists to higher values of δ2, even in the
valence fluctuation regime of dot 1 at δ1 ≈ U/2−Γ. A closer
inspection of the results reveals that the splitting in this regime
corresponds to the width of the Kondo resonance on dot 2.
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Figure 5: (Color online) Spectral function on dot 1 (left panels) and dot 2 (right panels) for two values of the inter-dot couplings t. The
quantum dot 2 is kept at δ2 = 0, which is the Kondo regime.

This splitting is thus not due to the exchange coupling, but is
a simple coherence (proximity) effect due to particle hopping
between the dots. Spectral dips of similar magnitude can thus
be generated by quite different mechanisms.

At larger t = 4.62 × 10−2, the effects of the inter-dot tun-
neling become even more pronounced, see the bottom row in
Fig. 5. The two dots behave increasingly as a single entity,
thus there is a pronounced “mirroring” of spectral features in
A1(ω) and A2(ω). The most pronounced effects occur in the
range δ1 ≈ 0.1 to δ1 ≈ 0.15 when the dot 1 is in the valence
fluctuation regime. The shade for ω < 0 in this range is the
nascent molecular orbital state that becomes better defined for
even larger t. The spectral weight in A1(ω) for ω > 0 is the
disappearing atomic on-site orbital of dot 1 that eventually
disappears for increased t. This is thus the transient regime
where both localized atomic and delocalized molecular spec-
tral features coexist.

Observing that interesting effects occur around δi ≈ 0.1,
we now fix one of the dots to this value, i.e., δ2 = 0.1, and
sweep the other in the full interval. At small t the second dot
is in the VF regime and A2(ω) shows a resonance near ω = 0
which results from the merging of the Kondo resonance with
the lower atomic peak. At intermediate value of t = 10−2 we
start to observe the effects of the exchange coupling: A2(ω)
shows a splitting of order J , see Fig. 6. In the central range
−0.1 < δ1 < 0.1, there is consequently a non-negligible anti-
ferromagnetic spin correlation 〈S1 · S2〉 ≈ −0.1. It is some-
what stronger for negative δ1, since in that case the overall
occupancy is closer to 2, which is favorable for local singlet
formation. As t grows, both spectral functions become visibly
perturbed (t = 2.15 × 10−2, bottom row). The spin correla-
tions in the centre are now much stronger, reaching values
around −0.3. The exchange splitting is asymmetric, which

can be explained by the following expression for J :

J = t2
(

1

U/2 + δ1 − δ2
+

1

U/2 + δ2 − δ1

)
=

4t2

U

1

1− 4(δ1 − δ2)2/U
,

(3)

which indicates that the largest exchange coupling is found
for δi of opposite signs, here for δ1 ∼ −0.1. The interdot
coupling also affects the occupancy and charge fluctuations
on dot 2: compared to the t = 0 values, the occupancy is
increased (toward half-filling) in the δ1 ∼ 0 region (charge
fluctuations are little affected) and decreased near δ1 ∼ −0.1
and δ1 ∼ 0.1 points, where an increase of charge fluctuations
is also observed. These results show that the behavior in this
regime cannot be explained by the exchange coupling alone:
the charge fluctuations also play an important role.

For large (absolute) values of δ1, the dot 1 becomes non-
interacting, while the dot 2 returns to the single-impurity va-
lence fluctuation regime with a resonance close to ω = 0.

III. SUPERCONDUCTING ATOMIC LIMIT

Here we provide some additional details regarding the su-
perconducting atomic (wide-gap) limit, introduced in Sec. II
of the main text.

A. Eigenstates

The singlet space is spanned by the following five states
(one from the zero-occupancy sector, three from the half-
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Figure 6: (Color online) Spectral function on dot 1 (left panels) and dot 2 (right panels) in the normal state for two values of the inter-dot
couplings t. The quantum dot 2 is kept at δ2 = 0.1, which is in the valence fluctuation regime.

filling sector, and one from the full-occupancy sector)

|0〉, d†2↓d
†
2↑|0〉,

1√
2

(
d†1↓d

†
2↑ − d

†
1↑d
†
2↓

)
|0〉,

d†1↓d
†
1↑|0〉, d†1↓d

†
1↑d
†
2↓d
†
2↑|0〉.

(4)

The Hamiltonian in this subspace is

HS =


U − δ1 − δ2 Γ 0 Γ 0

Γ U − δ1 + δ2 −
√

2t 0 Γ

0 −
√

2t 0 −
√

2t 0

Γ 0 −
√

2t U + δ1 − δ2 Γ
0 Γ 0 Γ U + δ1 + δ2

 . (5)

In general, the eigenvalues cannot be expressed in (reasonably
simple) closed form and need to be computed numerically.
For δi = 0 and t = 0, they are

0, U, U − 2Γ, U, U + 2Γ. (6)

The first state is the inter-dot singlet with one electron on each
dot. For δ = 0, to lowest order in t only the first state shifts in
energy by the superexchange coupling 4t2/U . For t = 0, to
lowest order in δ the third and the fifth state shift to U − 2Γ−
δ2/Γ and U + 2Γ + δ2/Γ, respectively. When both δ and t
are non-zero, the first state shifts down by the corresponding
superexchange coupling ∝ t2, the third and the fifth shift by
∝ δ2, while the two remaining states remain fixed at U . Since
U � ∆ in our NRG calculations, the states that are relevant
for the sub-gap part of the spectrum are only two: the inter-
dot singlet (first state) at ≈ −4t2/U , and the (third) state at
≈ U −2Γ− δ2/Γ (denoted |S1〉 and |S2〉, respectively, in the

main text).
The doublet space is spanned by the following four states

(two each from single-occupancy and triple-occupancy sec-
tors):

d†2↑|0〉, d†1↑|0〉, d†1↑d
†
2↓d
†
2↑|0〉, d†1↓d

†
1↑d
†
2↑|0〉. (7)

The corresponding Hamiltonian is

HD =


U
2 − δ1 −t 0 Γ
−t U

2 − δ2 Γ 0
0 Γ U

2 + δ t
Γ 0 t U

2 + δ1

 . (8)

The corresponding eigenstates are discussed in the main text.
The triplet state has energy 0 irrespective of the parameters.
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B. Shiba state level diagrams

We proceed in the order in which the NRG results are pre-
sented in the main text. In Fig. 7(a) we consider the left-right
symmetric case at half-filling for increasing inter-dot coupling
t. This should be compared with the bottom panel in Fig. 3 in
the main text. The lowest three states are in direct correspon-
dence: the ground state is always the inter-dot singlet state,
there is a triplet state growing in energy as ∝ 4t2/U , and
a doublet excited state. The singlet-triplet splitting behaves
similarly in both approaches. There are more differences re-
lated to the doublet state: at t = 0, in the NRG we find it at
Ω = 0.6∆ = 0.006 while here it is found at a much higher
energy of≈ U/2−Γ. Nevertheless, we find the same increas-
ing trend at large t, thus qualitative behavior is the same. The
remaining states are irrelevant for our purposes since they are
merged with the continuum; this is also the case in all follow-
ing examples.

In Fig. 7(b) we study the δ = δ1 = δ2 dependence at con-
stant t. These results should be compared with the diagrams
in Fig. 8 of main text. There is an important qualitative dif-
ference here: the NRG shows that the ground state is always a
singlet and that there is an avoided level crossing between the
two singlet Shiba states, yet in the atomic limit we find a fi-
nite parameter range where one of the doublet states becomes
the ground state and, furthermore, there is a crossing of the
singlet states in the same parameter range. This indicates that
the avoided crossing in the true solution is due to virtual tran-
sitions through the quasiparticle continuum. (For large ∆, we
find the intermediate doublet ground state also in the NRG
solution, confirming the important role of the quasiparticles.)

In Fig. 7(c) we consider the asymmetric case with δ2 fixed
to 0 and variable δ1, to be compared with the Shiba level dia-
gram in Fig. 12 in main text. It correctly reproduces the split-
ting of the doublet states at low δ1, the singlet-doublet quan-
tum phase transition induced by driving one of the dots away
from the Kondo regime toward the empty orbital regime, as
well as the behavior of the triplet state.

Finally, in Fig. 7(d) we plot the generic case with the QD2
in the valence fluctuation regime, to be compared with the
Shiba level diagrams in Fig. 13 in main text. The quantum
phase transition at δ1 ≈ 0.1 is correctly reproduced, while the
one at δ1 ≈ −0.15 occurs in the true solution only at much
lower δ1.

C. Deviations from the wide-gap limit

Here we briefly consider the main effects of finite gaps
compared to the wide-gap limit. For ∆ → ∞ the continuum
of the quasiparticle states plays no role, thus there is strictly
speaking no Kondo physics and the only effect of the super-
conducting lead is the proximity effect, i.e., a local pairing
field proportional to the hybridization strength Γ. The singlet-
doublet transitions is then simply due to the occupancy varia-
tion: there are two singlet states with energies

U

2
±
√

Γ2 + δ2, (9)
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Figure 7: (Color online) Eigenvalues of the effective Hamiltonian in
the superconducting atomic limit (∆→∞). The color scheme is the
same as for the NRG results: black lines are S = 0, red lines S =
1/2, blue line is S = 1. a) Left-right symmetric case, half-filling,
evolution as a function of t. b) Left-right symmetric case away from
half-filling, t = 0.02. The singlet states (black lines) actually cross,
the appearance of avoided crossing is a plotting artifact. c) Generic
case with δ2 = 0, t = 0.02. d) Generic case with δ2 = 0.1, t =
0.02. In all calculations U = 0.27, Γ = 0.02.



6

0
0.2
0.4
0.6
0.8

1

E/
Δ

doublet
singlet 1
singlet 2

-2000
-1000

0
1000

<d
d>

/Δ

10-2 10-1 100 101 102 103 104 105 106

Δ/TK

0
0.2
0.4
0.6
0.8

1

<i
| (

n-
1)

2  |i
> doublet

singlet 1
singlet 2

0.01
0.1

1
10

100
1000

E

Figure 8: (Color online) Single quantum dot case at the particle-hole
symmetric point, δ = 0, for fixed U and Γ and variable ∆. (a)
Sub-gap state energies showing the singlet-doublet transition at ∆ ≈
3TK . (b) Sub-gap state energies rescaled with the gap ∆. The second
singlet state enters the sub-gap region only at very large ∆ ∼ 103TK .
(c) Ground state expectation value of the pairing operator, rescaled
by ∆. (d) Charge fluctuations in the sub-gap Shiba states, evaluated
as the expectation values of the corresponding many-particle states.
The parameters are: U/Γ = 0.27/0.02.

and a doublet at zero energy. In the opposite limit of ∆ →
0, there is no superconductivity, only Kondo screening. The
cross-over between the two regimes occurs for ∆ ∼ TK .

At the particle-hole symmetric point and for fixed U , TK
is constant and ∆ can be tuned across the singlet-doublet
quantum phase transition, see Fig. 8. The asymptotic super-
conducting atomic limit regime with both singlet excitations
present inside the sub-gap region occurs only for very large
∆/TK & 103. This scale is determined by ∆ ∼ U , i.e.,
the superconducting atomic limit is reached when the energy
scale of the atomic processes is comparable or lower than the
superconducting gap. This cross-over is unrelated to Kondo
physics, as evident from the large separation of the relevant
energy scales. The most interesting information about this
cross-over is contained in the charge fluctuations of the sin-
glet states, shown in the bottom panel. The cross-over to the
atomic limit corresponds to a change in the nature of the sin-
glet states from delocalized Kondo singlets formed by the lo-
cal moment on the quantum dot and the conduction-band elec-
trons (hence charge fluctuations are low and determined by the
ratio of the hybridization strength over e-e repulsion, Γ/U ),
to BCS like singlet states 1/

√
2(|0〉 ± | ↑↓〉) with saturating

charge fluctuations that are caused by the proximity effect, not
by quasiparticle hopping. (In the NRG, the information about
the expectation values of all sub-gap states is directly avail-
able in a reliable way through the diagonal matrix elements of
the corresponding singlet operators3,4.)

The general trend of ∆ decreasing from the ∆ → ∞
(atomic) limit can be generalized: it leads to a decreasing en-
ergy of states associated with the Kondo screening. In the
DQD case, these are chiefly the two doublet states, as well as
the first excited singlet state.
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